WHO. 2021 Report. https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health. Accessed 29 July 2021.
Levine H, Jorgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Jolles M, Pinotti R, Swan SH. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum Reprod Update. 2023;29(2):157–76. https://doi.org/10.1093/humupd/dmac035.
Kushawaha B, Yadav RS, Swain DK, Kumari P, Kumar A, Yadav B, Anand M, Yadav S, Singh D, Garg SK. Collapsed mitochondrial cristae in goat spermatozoa due to mercury result in lethality and compromised motility along with altered kinematic patterns. Sci Rep. 2021;11(1):646. https://doi.org/10.1038/s41598-020-80235-y.
Article CAS PubMed PubMed Central Google Scholar
Hardneck F, Israel G, Pool E, Maree L. Quantitative assessment of heavy metal effects on sperm function using computer-aided sperm analysis and cytotoxicity assays. Andrologia. 2018;50(10):e13141.
Apostoli P, Catalani S. Metal ions affecting reproduction and development. Met Ions Life Sci. 2011;8:263–303.
Benoff S, Jacob A, Hurley IR. Male infertility and environmental exposure to lead and cadmium. Hum Reprod Update. 2000;6(2):107–21. https://doi.org/10.1093/humupd/6.2.107.
Article CAS PubMed Google Scholar
Wirth JJ, Mijal RS. Adverse effects of low level heavy metal exposure on male reproductive function. Syst Biol Reprod Med. 2010;56(2):147–67. https://doi.org/10.3109/19396360903582216.
Article CAS PubMed Google Scholar
Hanf V, Forstmann A, Costea JE, Schieferstein G, Fischer I, Schweinsberg F. Mercury in urine and ejaculate in husbands of barren couples. Toxicol Lett. 1996;88(1–3):227–31. https://doi.org/10.1016/0378-4274(96)03742-3.
Article CAS PubMed Google Scholar
Nikolaou VS, Petit A, Zukor DJ, Papanastasiou C, Huk OL, Antoniou J. Presence of cobalt and chromium ions in the seminal fluid of young patients with metal-on-metal total hip arthroplasty. J Arthroplast. 2013;28(1):161–7. https://doi.org/10.1016/j.arth.2012.04.019.
Goltz JS, Gardner TK, Kanous KS, Lindemann CB. The interaction of pH cyclic adenosine 3′,5′-monophosphate on activation of motility in Triton X-100 extracted bull sperm. Biol Reprod. 1988;39(5):1129–36. https://doi.org/10.1095/biolreprod39.5.1129.
Article CAS PubMed Google Scholar
Harrison RA. Rapid PKA-catalysed phosphorylation of boar sperm proteins induced by the capacitating agent bicarbonate. Mol Reprod Dev. 2004;67(3):337–52. https://doi.org/10.1002/mrd.20028.
Article CAS PubMed Google Scholar
Nolan MA, Babcock DF, Wennemuth G, Brown W, Burton KA, McKnight GS. Sperm-specific protein kinase A catalytic subunit Calpha2 orchestrates cAMP signaling for male fertility. Proc Natl Acad Sci USA. 2004;101(37):13483–8. https://doi.org/10.1073/pnas.0405580101.
Article CAS PubMed PubMed Central Google Scholar
Salathe M. Regulation of mammalian ciliary beating. Annu Rev Physiol. 2007;69:401–22. https://doi.org/10.1146/annurev.physiol.69.040705.141253.
Article CAS PubMed Google Scholar
Cejudo-Roman A, Pinto FM, Subirán N, Ravina CG, Fernández-Sánchez M, Pérez-Hernández N, Pérez R, Pacheco A, Irazusta J, Candenas L. The voltage-gated sodium channel nav1.8 is expressed in human sperm. PLoS ONE. 2013;8(9): e76084. https://doi.org/10.1371/journal.pone.0076084.
Article CAS PubMed PubMed Central Google Scholar
Mizuno K, Padma P, Konno A, Satouh Y, Ogawa K, Inaba K. A novel neuronal calcium sensor family protein, calaxin, is a potential Ca (2+)-dependent regulator for the outer arm dynein of metazoan cilia and flagella. Biol Cell. 2009;101(2):91–103. https://doi.org/10.1042/BC20080032.
Article CAS PubMed Google Scholar
Mizuno K, Shiba K, Okai M, Takahashi Y, Shitaka Y, Oiwa K, Tanokura M, Inaba K. Calaxin drives sperm chemotaxis by Ca2+-mediated direct modulation of a dynein motor. Proc Natl Acad Sci USA. 2012;109(50):20497–502. https://doi.org/10.1073/pnas.1217018109.
Article PubMed PubMed Central Google Scholar
Darszon A, Nishigaki T, Beltran C, Treviño CL. Calcium channels in the development, maturation, and function of spermatozoa. Physiol Rev. 2011;91(4):1305–55.
Article CAS PubMed Google Scholar
Jimenez-Gonzalez C, Michelangeli F, Harper CV, Barratt CL, Publicover SJ. Calcium signalling in human spermatozoa: a specialized “toolkit” of channels, transporters and stores. Hum Reprod Update. 2006;12(3):253–67.
Article CAS PubMed Google Scholar
Shiba K, Baba SA, Inoue T, Yoshida M. Ca2+ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response. Proc Natl Acad Sci USA. 2008;105(49):19312–7. https://doi.org/10.1073/pnas.0808580105.
Article PubMed PubMed Central Google Scholar
Koizumi T, Li ZG. Role of oxidative stress in single-dose, cadmium-induced testicular cancer. J Toxicol Environ Health. 1992;37(1):25–36. https://doi.org/10.1080/15287399209531654.
Article CAS PubMed Google Scholar
Hsu PC, Liu MY, Hsu CC, Chen LY, Guo YL. Lead exposure causes generation of reactive oxygen species and functional impairment in rat sperm. Toxicology. 1997;122(1–2):133–43. https://doi.org/10.1016/s0300-483x(97)00090-5.
Article CAS PubMed Google Scholar
Marchlewicz M, Wiszniewska B, Gonet B, Baranowska-Bosiacka I, Safranow K, Kolasa A, Głabowski W, Kurzawa R, Jakubowska K, Rać ME. Increased lipid peroxidation and ascorbic acid utilization in testis and epididymis of rats chronically exposed to lead. Biometals. 2007;20(1):13–9. https://doi.org/10.1007/s10534-006-9009-z.
Article CAS PubMed Google Scholar
Marchiani S, Tamburrino L, Farnetani G, Muratori M, Vignozzi L, Baldi E. Acute effects on human sperm exposed in vitro to cadmium chloride and diisobutyl phthalate. Reproduction. 2019;158(3):281–90. https://doi.org/10.1530/REP-19-0207.
Article CAS PubMed Google Scholar
Kushawaha B, Yadav RS, Swain DK, Rai PK, Garg SK. Mercury-induced inhibition of tyrosine phosphorylation of sperm proteins and altered functional dynamics of buck spermatozoa: an in vitro study. Biol Trace Elem Res. 2020;198(2):478–92. https://doi.org/10.1007/s12011-020-02077-z.
Article CAS PubMed Google Scholar
Liu DY, Clarke GN, Baker HW. Relationship between sperm motility assessed with the Hamilton-Thorn motility analyzer and fertilization rates in vitro. J Androl. 1991;12(4):231–9.
Article CAS PubMed Google Scholar
He Y, Zou Q, Chen H, Weng S, Luo T, Zeng X. Lead Inhibits Human Sperm Functions by reducing the levels of intracellular calcium, cAMP, and tyrosine phosphorylation. Tohoku J Exp Med. 2016;238(4):295–303. https://doi.org/10.1620/tjem.238.295.
Article CAS PubMed Google Scholar
Kasperczyk A, Kasperczyk S, Horak S, Ostałowska A, Grucka-Mamczar E, Romuk E, Olejek A, Birkner E. Assessment of semen function and lipid peroxidation among lead exposed men. Toxicol Appl Pharmacol. 2008;228(3):378–84. https://doi.org/10.1016/j.taap.2007.12.024.
Article CAS PubMed Google Scholar
Taha EA, Sayed SK, Ghandour NM, Mahran AM, Saleh MA, Amin MM, Shamloul R. Correlation between seminal lead and cadmium and seminal parameters in idiopathic oligoasthenozoospermic males. Cent Eur J Urol. 2013;66(1):84–92. https://doi.org/10.5173/ceju.2013.01.art28.
Telisman S, Cvitković P, Jurasović J, Pizent A, Gavella M, Rocić B. Semen quality and reproducti
Comments (0)