Scheerlinck T (2014) Cup positioning in total hip arthroplasty. Acta Orthop Belg 80(3):336–347
Patil S, Bergula A, Chen PC, Colwell CW Jr, D’Lima DD (2003) Polyethylene wear and acetabular component orientation. J Bone Jt Surg Am. 85-A(Suppl 4):56–63. https://doi.org/10.2106/00004623-200300004-00007
Fontalis A, Kayani B, Thompson JW, Plastow R, Haddad FS (2022) Robotic total hip arthroplasty: past, present and future. Orthop Trauma 36(1):6–13. https://doi.org/10.1016/j.mporth.2021.11.002
Illgen RL Nd, Bukowski BR, Abiola R, et al (2017) Robotic-Assisted Total Hip Arthroplasty: Outcomes at Minimum Two-Year Follow-Up. Surg Technol Int 30:365–372
Little NJ, Busch CA, Gallagher JA, Rorabeck CH, Bourne RB (2009) Acetabular polyethylene wear and acetabular inclination and femoral offset. Clin Orthop Relat Res 467(11):2895–2900. https://doi.org/10.1007/s11999-009-0845-3
Article PubMed PubMed Central Google Scholar
Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR (1978) Dislocations after total hip-replacement arthroplasties. J Bone Jt Surg Am 60(2):217–220
Bosker BH, Verheyen CC, Horstmann WG, Tulp NJ (2007) Poor accuracy of freehand cup positioning during total hip arthroplasty. Arch Orthop Trauma Surg 127(5):375–379. https://doi.org/10.1007/s00402-007-0294-y
Article CAS PubMed PubMed Central Google Scholar
Callanan MC, Jarrett B, Bragdon CR et al (2011) The john charnley award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthop Relat Res 469(2):319–329. https://doi.org/10.1007/s11999-010-1487-1
Boylan M, Suchman K, Vigdorchik J, Slover J, Bosco J (2018) Technology-assisted hip and knee arthroplasties: an analysis of utilization trends. J Arthroplast 33(4):1019–1023. https://doi.org/10.1016/j.arth.2017.11.033
Buchan GBJ, Hecht CJ 2nd, Liu D, Mokete L, Kendoff D, Kamath AF (2023) Improved accuracy of a novel fluoroscopy-based robotically assisted THA system compared to manual THA. J Robot Surg 17(5):2073–2079. https://doi.org/10.1007/s11701-023-01623-w
Ng N, Gaston P, Simpson PM, Macpherson GJ, Patton JT, Clement ND (2021) Robotic arm-assisted versus manual total hip arthroplasty: a systematic review and meta-analysis. Bone Jt J 103-B(6):1009–1020. https://doi.org/10.1302/0301-620X.103B6.BJJ-2020-1856.R1
Ong CB, Buchan GBJ, Acuña AJ et al (2023) Cost-effectiveness of a novel, fluoroscopy-based robotic-assisted total hip arthroplasty system: a markov analysis. Int J Med Robot. https://doi.org/10.1002/rcs.2582
Kunze KN, Bovonratwet P, Polce EM, Paul K, Sculco PK (2022) Comparison of surgical time, short-term adverse events and implant placement accuracy between manual, robotic-assisted, and computernavigated total hip arthroplasty: a network metaanalysis of randomized controlled trials. J Am Acad Orthop Surg Glob Res Rev. https://doi.org/10.5435/JAAOSGlobal-D-21-00200
Article PubMed PubMed Central Google Scholar
Ponzio DY, Lonner JH (2015) Preoperative mapping in unicompartmental knee arthroplasty using computed tomography scans is associated with radiation exposure and carries high cost. J Arthroplast 30(6):964–967. https://doi.org/10.1016/j.arth.2014.10.039
Maldonado DR, Go CC, Kyin C et al (2021) Robotic arm-assisted total hip arthroplasty is more cost-effective than manual total hip arthroplasty: a markov model analysis. J Am Acad Orthop Surg 29(4):e168–e177. https://doi.org/10.5435/JAAOS-D-20-00498
Buchan G, Ong C, Hecht C et al (2023) Equivalent radiation exposure with robotic total hip replacement using a novel fluoroscopic-guided (CT-free) system case-control study versus manual technique [published correction appears in J robot surg 2023 Apr 15]. J Robot Surg 17(4):1561–1567. https://doi.org/10.1007/s11701-023-01554-6
Ong CB, Buchan GBJ, Hecht Ii CJ et al (2023) Robotic-assisted total hip arthroplasty utilizing a fluoroscopy-guided system resulted in improved intra-operative efficiency relative to a computerized tomography-based platform. J Robot Surg 17(6):2841–2847. https://doi.org/10.1007/s11701-023-01723-7
Ong CB, Chiu YF, Premkumar A, GonzalezDellaValle A (2023) Use of a novel imageless navigation system reduced fluoroscopy exposure and improved acetabular positioning in anterior approach total hip arthroplasty a case-control study. Arch Orthop Trauma Surg 143(5):2739–2745. https://doi.org/10.1007/s00402-022-04520-3
Bradley MP, Benson JR, Muir JM (2019) Accuracy of acetabular component positioning using computer-assisted navigation in direct anterior total hip arthroplasty. Cureus 11(4):e4478. https://doi.org/10.7759/cureus.4478
Article PubMed PubMed Central Google Scholar
Ryan JA, Jamali AA, Bargar WL (2010) Accuracy of computer navigation for acetabular component placement in THA. Clin Orthop Relat Res 468(1):169–177. https://doi.org/10.1007/s11999-009-1003-7
Kamath AF, Durbhakula SM, Pickering T et al (2022) Improved accuracy and fewer outliers with a novel CT-free robotic THA system in matched-pair analysis with manual THA [published correction appears in j robot surg 2021 Dec 6]. J Robot Surg 16(4):905–913. https://doi.org/10.1007/s11701-021-01315-3
Zimmer Biomet TV [Internet]. [cited 2023 Aug 11]. ROSA® Hip System V1.0 Surgical Technique (Extended Version). https://zimmerbiomet.tv/videos/2858?version=3515. Accessed 16 April 2024.
Perazzini P, Trevisan M, Sembenini P et al (2020) The Mako ™ robotic arm-assisted total hip arthroplasty using direct anterior approach: surgical technique, skills and pitfals. Acta Biomed 91(4-S):21–30
PubMed PubMed Central Google Scholar
Stryker MedEd [Internet]. MakoTM Total Hip Direct anterior approach: Surgical reference guide. https://www.strykermeded.com/media/2040/mako-tha-direct-anterior-approach-surgical-technique.pdf. Accessed 16 April 2024.
Ong CB, Buchan GBJ, Hecht Ii CJ, Kendoff DO, Homma Y, Kamath AF (2023) Fluoroscopy-based robotic assistance for total hip arthroplasty improves acetabular cup placement accuracy for obese patients compared to the manual fluoroscopic- assisted technique. Technol Health Care. https://doi.org/10.3233/THC-231127
Ong CB, Buchan GBJ, Hecht Ii CJ et al (2023) Fluoroscopy-based robotics in total hip arthroplasty mitigates laterality-based differences in acetabular cup placement when compared to the manual fluoroscopic- assisted technique. Technol Health Care. https://doi.org/10.3233/THC-231126
Kong X, Yang M, Li X et al (2020) Impact of surgeon handedness in manual and robot-assisted total hip arthroplasty. J Orthop Surg Res 15(1):159. https://doi.org/10.1186/s13018-020-01671-0
Article PubMed PubMed Central Google Scholar
Gupta A, Redmond JM, Hammarstedt JE, Petrakos AE, Vemula SP, Domb BG (2015) Does robotic-assisted computer navigation affect acetabular cup positioning in total hip arthroplasty in the obese patient? A Comp Study J Arthroplast 30(12):2204–2207. https://doi.org/10.1016/j.arth.2015.06.062
Emara AK, Samuel LT, Acuña AJ, Kuo A, Khlopas A, Kamath AF (2021) Robotic-arm assisted versus manual total hip arthroplasty: Systematic review and meta-analysis of radiographic accuracy. Int J Med Robot 17(6):e2332
Post ZD, Orozco F, Diaz-Ledezma C, Hozack WJ, Ong A (2014) Direct anterior approach for total hip arthroplasty: indications, technique, and results. J Am Acad Orthop Surg 22(9):595–603. https://doi.org/10.5435/JAAOS-22-09-595
Liu Z, Bell CD, Ong AC, Wu S, Li Z, Zhang Y (2020) Direct anterior approach total hip arthroplasty for crowe III and IV dysplasia. Arthroplast Today 6(2):251–256. https://doi.org/10.1016/j.artd.2020.02.008
Article PubMed PubMed Central Google Scholar
Chang JD, Kim IS, Bhardwaj AM, Badami RN (2017) The evolution of computer-assisted total hip arthroplasty and relevant applications. Hip Pelvis 29(1):1–14. https://doi.org/10.5371/hp.2017.29.1.1
Article CAS PubMed PubMed Central Google Scholar
Buchan GBJ, Hecht CJ 2nd, Lawrie CM, Sculco PK, Kamath AF (2023) The learning curve for a novel, fluoroscopy-based robotic-assisted total hip arthroplasty system. Int J Med Robot 19(4):e2518
Comments (0)