Tan IL, Wojcinski A, Rallapalli H, Lao Z, Sanghrajka RM, Stephen D, et al. Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and medulloblastoma formation. Proc Natl Acad Sci USA. 2018;115:3392–7.
Article CAS PubMed PubMed Central Google Scholar
Sun X, Klingbeil O, Lu B, Wu C, Ballon C, Ouyang M, et al. BRD8 maintains glioblastoma by epigenetic reprogramming of the p53 network. Nature. 2023;613:195–202.
Article CAS PubMed Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
Article CAS PubMed Google Scholar
Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 2010;468:829–U128.
Article CAS PubMed Google Scholar
McDonald DM, Baluk P. Imaging of angiogenesis in inflamed airways and tumors: newly formed blood vessels are not alike and may be wildly abnormal: Parker B. Francis lecture. Chest. 2005;128:602s–608s.
Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000;156:1363–80.
Article CAS PubMed PubMed Central Google Scholar
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745–70.
Article CAS PubMed Google Scholar
Al-Ostoot FH, Salah S, Khamees HA, Khanum SA. Tumor angiogenesis: current challenges and therapeutic opportunities. Cancer Treat Res Commun. 2021;28:100422.
Huang MH, Lin YN, Wang CR, Deng LJ, Chen MF, Assaraf YG, et al. New insights into antiangiogenic therapy resistance in cancer: mechanisms and therapeutic aspects. Drug Resist Updat. 2022;64:100849.
Article CAS PubMed Google Scholar
Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol. 2019;234:8509–21.
Article CAS PubMed Google Scholar
Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol Mech Dis. 2021;16:223–49.
Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118:9–16.
Article CAS PubMed PubMed Central Google Scholar
Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin Cancer Res. 2016;22:1865–74.
Article CAS PubMed Google Scholar
Qin J, Tsai SY, Tsai MJ. The critical roles of COUP-TFII in tumor progression and metastasis. Cell Biosci. 2014;4:58.
Article PubMed PubMed Central Google Scholar
Xu Z, Yu S, Hsu CH, Eguchi J, Rosen ED. The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II is a critical regulator of adipogenesis. Proc Natl Acad Sci USA. 2008;105:2421–6.
Article CAS PubMed PubMed Central Google Scholar
Okamura M, Kudo H, Wakabayashi K, Tanaka T, Nonaka A, Uchida A, et al. COUP-TFII acts downstream of Wnt/β-catenin signal to silence PPARγ gene expression and repress adipogenesis. Proc Natl Acad Sci USA. 2009;106:5819–24.
Article CAS PubMed PubMed Central Google Scholar
Xie X, Qin J, Lin SH, Tsai SY, Tsai MJ. Nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) modulates mesenchymal cell commitment and differentiation. Proc Natl Acad Sci USA. 2011;108:14843–8.
Article CAS PubMed PubMed Central Google Scholar
You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature. 2005;435:98–104.
Article CAS PubMed Google Scholar
Polvani S, Pepe S, Milani S, Galli A. COUP-TFII in health and disease. Cells. 2020;9:101.
Yun SH, Park JI. COUP-TFII overexpression inhibits cell proliferation and invasion via increased expression of p53 and PTEN and decreased Akt phosphorylation in human colorectal cancer SNU-C4 cells. Anticancer Res. 2020;40:767–77.
Article CAS PubMed Google Scholar
Ding W, Zhang Y, Cai H, Liu G, Ye Y, Xu G, et al. Overexpression of COUP‑TFII suppresses proliferation and metastasis of human gastric cancer cells. Mol Med Rep. 2018;17:2393–401.
Qin J, Wu SP, Creighton CJ, Dai F, Xie X, Cheng CM, et al. COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis. Nature. 2013;493:236–40.
Article CAS PubMed Google Scholar
Polvani S, Tarocchi M, Tempesti S, Mello T, Ceni E, Buccoliero F, et al. COUP-TFII in pancreatic adenocarcinoma: clinical implication for patient survival and tumor progression. Int J Cancer. 2014;134:1648–58.
Article CAS PubMed Google Scholar
Bao Y, Gu D, Feng W, Sun X, Wang X, Zhang X, et al. COUP-TFII regulates metastasis of colorectal adenocarcinoma cells by modulating Snail1. Br J Cancer. 2014;111:933–43.
Article CAS PubMed PubMed Central Google Scholar
Taniguchi H, Suzuki Y, Imai K, Adachi Y. Antitumoral RNA-targeted oligonucleotide therapeutics: the third pillar after small molecule inhibitors and antibodies. Cancer Sci. 2022;113:2952–61.
Article CAS PubMed PubMed Central Google Scholar
Gou M, Men K, Zhang J, Li Y, Song J, Luo S, et al. Efficient inhibition of C-26 colon carcinoma by VSVMP gene delivered by biodegradable cationic nanogel derived from polyethyleneimine. ACS Nano. 2010;4:5573–84.
Article CAS PubMed Google Scholar
Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23:265–80.
Article CAS PubMed PubMed Central Google Scholar
Zhao J, Ullah I, Gao B, Guo J, Ren XK, Xia S, et al. Agmatine-grafted bioreducible poly(l-lysine) for gene delivery with low cytotoxicity and high efficiency. J Mater Chem B. 2020;8:2418–30.
Article CAS PubMed Google Scholar
Yang S, Wong KH, Hua P, He C, Yu H, Shao D, et al. ROS-responsive fluorinated polyethyleneimine vector to co-deliver shMTHFD2 and shGPX4 plasmids induces ferroptosis and apoptosis for cancer therapy. Acta Biomater. 2022;140:492–505.
Article CAS PubMed Google Scholar
Chen W, Wang F, Yu X, Qi J, Dong H, Cui B, et al. LncRNA MIR31HG fosters stemness malignant features of non-small cell lung cancer via H3K4me1- and H3K27Ace-mediated GLI2 expression. Oncogene. 2024;43:1328–1340.
Comments (0)