Abe-Higuchi N, Uchida S, Yamagata H et al (2016) Hippocampal sirtuin 1 signaling mediates Depression-like Behavior. Biol Psychiatry 80:815–826. https://doi.org/10.1016/J.BIOPSYCH.2016.01.009
Article CAS PubMed Google Scholar
Andersen SL (2015) Exposure to early adversity: points of cross-species translation that can lead to improved understanding of depression. Dev Psychopathol 27:477–491. https://doi.org/10.1017/S0954579415000103
Article PubMed PubMed Central Google Scholar
Andersen SL (2022) Neuroinflammation, Early-Life Adversity, and Brain Development. Harv Rev Psychiatry 30:24–39. https://doi.org/10.1097/HRP.0000000000000325
Article PubMed PubMed Central Google Scholar
Antika LD, Tasfiyati AN, Hikmat H, Septama AW (2022) Scopoletin: a review of its source, biosynthesis, methods of extraction, and pharmacological activities. Z fur Naturforsch - Sect C J Biosci 77:303–316. https://doi.org/10.1515/ZNC-2021-0193/ASSET/GRAPHIC/J_ZNC-2021-0193_FIG_002.JPG
Atmaca M (2020) Selective serotonin reuptake inhibitor-induced sexual dysfunction: current management perspectives. Neuropsychiatr Dis Treat 16:1043–1050. https://doi.org/10.2147/NDT.S185757
Article CAS PubMed PubMed Central Google Scholar
Bachiller S, Paulus A, Vázquez-Reyes S et al (2020) Maternal separation leads to regional hippocampal microglial activation and alters the behavior in the adolescence in a sex-specific manner. Brain Behav Immun - Heal 9:100142. https://doi.org/10.1016/J.BBIH.2020.100142
Bannerman DM, Rawlins JNP, McHugh SB et al (2004) Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 28:273–283. https://doi.org/10.1016/J.NEUBIOREV.2004.03.004
Article CAS PubMed Google Scholar
Bergman NJ (2019) Birth practices: maternal-neonate separation as a source of toxic stress. Birth Defects Res 111:1087–1109. https://doi.org/10.1002/BDR2.1530
Article CAS PubMed Google Scholar
Bian H, Xiao L, Liang L et al (2022) Polydatin prevents Neuroinflammation and relieves Depression via regulating Sirt1/HMGB1/NF-κB signaling in mice. Neurotox Res 40:1393–1404. https://doi.org/10.1007/S12640-022-00553-Z/FIGURES/8
Article CAS PubMed Google Scholar
Capra JC, Cunha MP, Machado DG et al (2010) Antidepressant-like effect of scopoletin, a coumarin isolated from Polygala sabulosa (Polygalaceae) in mice: evidence for the involvement of monoaminergic systems. Eur J Pharmacol 643:232–238. https://doi.org/10.1016/J.EJPHAR.2010.06.043
Article CAS PubMed Google Scholar
Chang TN, Deng JS, Chang YC et al (2012) Ameliorative effects of scopoletin from Crossostephium chinensis against inflammation pain and its mechanisms in mice. Evidence-based Complement Altern Med. https://doi.org/10.1155/2012/595603. 2012:
Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625. https://doi.org/10.1016/J.NEUBIOREV.2005.03.009
Article CAS PubMed Google Scholar
Cui Y, Cao K, Lin H et al (2020) Early-life stress induces Depression-Like Behavior and synaptic-plasticity changes in a maternal separation rat model: gender difference and Metabolomics Study. Front Pharmacol 11:500866. https://doi.org/10.3389/FPHAR.2020.00102/BIBTEX
Ding Z, Dai Y, Hao H et al (2008) Anti-inflammatory effects of Scopoletin and underlying mechanisms. Pharm Biol 46:854–860. https://doi.org/10.1080/13880200802367155
Drude S, Geißler A, Olfe J et al (2011) Side effects of control treatment can conceal experimental data when studying stress responses to injection and psychological stress in mice. Lab Anim 2011 404 40:119–128. https://doi.org/10.1038/laban0411-119
Edinoff AN, Akuly HA, Hanna TA et al (2021a) Selective serotonin reuptake inhibitors and adverse effects: a narrative review. Neurol Int 2021 13:387–401. https://doi.org/10.3390/NEUROLINT13030038
Edinoff AN, Fort JM, Woo JJ et al (2021b) Selective Serotonin Reuptake Inhibitors and Clozapine: Clinically Relevant Interactions and Considerations. Neurol Int 2021, Vol 13, Pages 445–463 13:445–463. https://doi.org/10.3390/NEUROLINT13030044
Fabricius K, Wörtwein G, Pakkenberg B (2008) The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus. Brain Struct Funct 212:403–416. https://doi.org/10.1007/S00429-007-0169-6/TABLES/4
Article PubMed PubMed Central Google Scholar
Francis-Oliveira J, Shieh IC, Vilar Higa GS et al (2021) Maternal separation induces changes in TREK-1 and 5HT1A expression in brain areas involved in the stress response in a sex-dependent way. Behav Brain Res 396:112909. https://doi.org/10.1016/J.BBR.2020.112909
Article CAS PubMed Google Scholar
Ganguly P, Brenhouse HC (2015) Broken or maladaptive? Altered trajectories in neuroinflammation and behavior after early life adversity. Dev Cogn Neurosci 11:18–30. https://doi.org/10.1016/J.DCN.2014.07.001
Gao XY, Li XY, Zhang CY, Bai CY (2024) Scopoletin: a review of its pharmacology, pharmacokinetics, and toxicity. Front Pharmacol 15:1268464. https://doi.org/10.3389/FPHAR.2024.1268464/BIBTEX
Article CAS PubMed PubMed Central Google Scholar
Gay NH, Suwanjang W, Ruankham W et al (2020) Butein, isoliquiritigenin, and scopoletin attenuate neurodegeneration via antioxidant enzymes and SIRT1/ADAM10 signaling pathway. RSC Adv 10:16593–16606. https://doi.org/10.1039/C9RA06056A
Article CAS PubMed PubMed Central Google Scholar
Godoy LD, Umeoka EHL, Ribeiro DE et al (2018) Multimodal early-life stress induces biological changes associated to psychopathologies. Horm Behav 100:69–80. https://doi.org/10.1016/J.YHBEH.2018.03.005
Gopinath A, Mackie PM, Phan LT et al (2023) The complex role of inflammation and gliotransmitters in Parkinson’s disease. Neurobiol Dis 176:105940. https://doi.org/10.1016/J.NBD.2022.105940
Article CAS PubMed Google Scholar
Grigoryan G, Segal M (2016) Lasting Differential effects on Plasticity Induced by prenatal stress in dorsal and ventral Hippocampus. https://doi.org/10.1155/2016/2540462. Neural Plast 2016:
Grinchii D, Dremencov E (2020) Mechanism of Action of Atypical Antipsychotic Drugs in Mood Disorders. Int J Mol Sci 2020, Vol 21, Page 9532 21:9532. https://doi.org/10.3390/IJMS21249532
Guo H, Deji C, Peng H et al (2021) The role of SIRT1 in the basolateral amygdala in depression-like behaviors in mice. Genes Brain Behav 20:e12765. https://doi.org/10.1111/GBB.12765
Article CAS PubMed Google Scholar
Gursahani M, Gawali N, Pai S et al (2021) Scopoletin ameliorates Lipopolysaccharide Induced Neuroinflammation, oxidative stress and cognitive dysfunction in mice: a mechanistic study. J Pharm Res Int 33:74–90. https://doi.org/10.9734/jpri/2021/v33i331164
Haji N, Mandolesi G, Gentile A et al (2012) TNF-α-mediated anxiety in a mouse model of multiple sclerosis. Exp Neurol 237:296–303. https://doi.org/10.1016/J.EXPNEUROL.2012.07.010
Article CAS PubMed Google Scholar
Hepsomali P, Groeger JA, Nishihira J, Scholey A (2020) Effects of oral Gamma-Aminobutyric Acid (GABA) administration on stress and sleep in humans: a systematic review. Front Neurosci 14:559962. https://doi.org/10.3389/FNINS.2020.00923/BIBTEX
Huang H, Wang Q, Guan X et al (2021) Effects of enriched environment on depression and anxiety-like behavior induced by early life stress: a comparison between different periods. Behav Brain Res 411:113389. https://doi.org/10.1016/J.BBR.2021.113389
Article CAS PubMed Google Scholar
Infurna MR, Reichl C, Parzer P et al (2016) Associations between depression and specific childhood experiences of abuse and neglect: a meta-analysis. J Affect Disord 190:47–55. https://doi.org/10.1016/J.JAD.2015.09.006
Comments (0)