Optimal design of bone tumor ablation device based on radio frequency heating using Taguchi method

Shin DS, Ryu SM, Park CH. Diagnostic strategy for malignant bone tumors. J Korean Orthop Assoc. 2015;50(6):429–37. https://doi.org/10.4055/jkoa.2015.50.6.429.

Article  Google Scholar 

Meyer JS, Mackenzie W. Malignant bone tumors and limb-salvage surgery in children. Pediatr Radiol. 2004;34:606–13. https://doi.org/10.1007/s00247-004-1226-4.

Article  Google Scholar 

Chung YG. Bone reconstruction: structural allograft and autograft. J Korean Orthop Assoc. 2015;50(6):462–73. https://doi.org/10.4055/jkoa.2015.50.6.462.

Article  Google Scholar 

Moore JR, Weiland AJ, Daniel RK. Use of free vascularized bone grafts in the treatment of bone tumors. Clin Orthop Relat Res. 1983;175:37–44.

Article  Google Scholar 

Harrington KD. The use of hemipelvic allografts or autoclaved grafts for reconstruction after wide resections of malignant tumors of the pelvis. JBJS. 1992;74(3):331–41.

Article  Google Scholar 

Chen WM, Chen TH, Huang CK, Chiang CC, Lo WH. Treatment of malignant bone tumours by extracorporeally irradiated autograft-prosthetic composite arthroplasty. J Bone Joint Surg. 2002;84(8):1156–61. https://doi.org/10.1302/0301-620X.84B8.0841156.

Article  Google Scholar 

Joo MW, Kang YK, Yoo CY, Cha SH, Chung YG. Prognostic significance of chemotherapy-induced necrosis in osteosarcoma patients receiving pasteurized autografts. PLoS ONE. 2017;12(2):e0172155. https://doi.org/10.1371/journal.pone.0172155.

Article  Google Scholar 

Dong YJ, Zhang GZ, Wang SP, Li Z. The use of immediate frozen autogenous mandible, for benign tumour mandibular reconstruction. Br J Oral Maxillofac Surg. 1996;34(1):58–61. https://doi.org/10.1016/S0266-4356(96)90137-0.

Article  Google Scholar 

Tsuchiya H, Wan SL, Sakayama K, Yamamoto N, Nishida H, Tomita K. Reconstruction using an autograft containing a tumor treated by liquid nitrogen. J Bone Joint Surg. 2005;87(2):218–25. https://doi.org/10.1302/0301-620X.87B2.15325.

Article  Google Scholar 

Fan QY, Zhou Y, Zhang M, Ma B, Yang T, Long H, Li Z. Microwave ablation of malignant extremity bone tumors. Springerplus. 2016;5(1):1–6. https://doi.org/10.1186/s40064-016-3005-8.

Article  Google Scholar 

Joo MW, Jin SR, Lee GJ, Lee YS, Chung YG. Feasibility of a novel in-situ local tumor ablation and recycling machine based on radiofrequency dielectric heating: in-depth review on research background and preliminary report of an experimental study. Clin Orthop Surg. 2024;16(1):157–67. https://doi.org/10.4055/cios23186.

Article  Google Scholar 

Bedane TF, Chen L, Marra F, Wang S. Experimental study of radio frequency (RF) thawing of foods with movement on the conveyor belt. J Food Eng. 2017;201:17–25. https://doi.org/10.1016/j.jfoodeng.2017.01.010.

Article  Google Scholar 

Geveke DJ, Bigley AB, Brunkhorst CD. Pasteurization of shell eggs using radio frequency heating. J Food Eng. 2017;193:53–7. https://doi.org/10.1016/j.jfoodeng.2016.08.009.

Article  Google Scholar 

Altemimi A, Aziz SN, Al-HiIphy AR, Lakhssassi N, Watson DG, Ibrahim SA. Critical review of radio-frequency (RF) heating applications in food processing. Food Qual Saf. 2019;3(2):81–91. https://doi.org/10.1093/fqsafe/fyz002.

Article  Google Scholar 

Hossain MT, Prasad B, Park KS, Lee HJ, Ha YH, Lee SK, Kim JK. Simulation and experimental evaluation of selective heating characteristics of 13.56 MHz radiofrequency hyperthermia in phantom models. Int J Precis Eng Manuf. 2016;17:253–6. https://doi.org/10.1007/s12541-016-0033-9.

Article  Google Scholar 

Mehdizadeh M. Microwave/RF applicators and probes: for material heating, sensing, and plasma generation. 2nd ed. Norwich: William Andrew; 2015.

Google Scholar 

Kamarudin MS, Radzi NH, Ponniran A, Abd-Rahman R. Simulation of electric field properties for air breakdown using COMSOL multiphysics. In: 4th IET clean energy and technology conference. 2016. p. 1–5.

Taguchi G, Rafanelli AJ. Taguchi on robust technology development: bringing quality engineering upstream. New York: ASME Press; 1994.

Google Scholar 

Kim JD, Kim NS, Hong CS, Oh CY. Design optimization of a xenogeneic bone plate and screws using the Taguchi and finite element methods. Int J Precis Eng Manuf. 2011;12:1119–24. https://doi.org/10.1007/s12541-011-0149-x.

Article  Google Scholar 

Lee SC, Kim CK, Song HE, Kim YS. Finite element analysis of crystalline silicon solar cell in the screen-printing process by using the Taguchi method. Int J Precis Eng Manuf. 2013;14:635–42. https://doi.org/10.1007/s12541-013-0085-z.

Article  Google Scholar 

Kim J. Engineering design: creative new product development. Seoul: Munundang; 2008.

Google Scholar 

Glen SP. Taguchi methods: a hands-on approach. Melbourne: Addison-Wesley; 1993.

Google Scholar 

Gabriel C, Gabriel S. Compilation of the dielectric properties of body tissues at RF and microwave frequencies. Fort Belvoir: Defense Technical Information Center; 1996.

Book  Google Scholar 

Taylor JR. An introduction to error analysis: the study of uncertainties in physical measurements. Mill Valley CA: University Science Books; 1982. p. 270.

Google Scholar 

Comments (0)

No login
gif