Bioelectric medicine: unveiling the therapeutic potential of micro-current stimulation

Levin M, Stevenson CG. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. Annu Rev Biomed Eng. 2012;14:295–323.

Article  Google Scholar 

Piccolino M. Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. Brain Res Bull. 1998;46:381–407.

Article  Google Scholar 

Funk RH, Monsees T, Özkucur N. Electromagnetic effects–from cell biology to medicine. Prog Histochem Cytochem. 2009;43:177–264.

Article  Google Scholar 

McCaig CD, Rajnicek AM, Song B, Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev. 2005;85(3):943–78.

Article  Google Scholar 

Malmivuo J, Plonsey R. Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford: Oxford University Press; 1995.

Book  Google Scholar 

Johnson MI. Transcutaneous electrical nerve stimulation (TENS): research to support clinical practice. Oxford: Oxford University Press; 2014.

Book  Google Scholar 

Kim E, Kim S, Kwon YW, Seo H, Kim M, Chung WG, Park W, Song H, Lee DH, Lee J. Electrical stimulation for therapeutic approach. Interdiscip Med. 2023;1:e20230003.

Article  Google Scholar 

Karatzanos E, Gerovasili V, Zervakis D, Tripodaki E-S, Apostolou K, Vasileiadis I, Papadopoulos E, Mitsiou G, Tsimpouki D, Routsi C. Electrical muscle stimulation: an effective form of exercise and early mobilization to preserve muscle strength in critically ill patients. Crit Care Res Pract. 2012;2012:432752.

Google Scholar 

Greve J, Muszkat R, Schmidt B, Chiovatto J, Barros T, Batisttella L. Functional electrical stimulation (FES): muscle histochemical analysis. Spinal Cord. 1993;31:764–70.

Article  Google Scholar 

Lee H, Lee J-H, Kim D, Hwang D, Lee M, Chung H, Kim T-J, Kim HS. Micro-current stimulation can modulate the adipogenesis process by regulating the insulin signaling pathway in 3T3-L1 cells and ob/ob mice. Life. 2023;13:404.

Article  Google Scholar 

Wirsing PG, Habrom AD, Zehnder TM, Friedli S, Blatti M. Wireless micro current stimulation–an innovative electrical stimulation method for the treatment of patients with leg and diabetic foot ulcers. Int Wound J. 2015;12:693–8.

Article  Google Scholar 

Al-Tubaikh JA. Internal medicine: an illustrated radiological guide. Cham: Springer; 2016.

Google Scholar 

Kolimechkov S, Seijo M, Swaine I, Thirkell J, Colado JC, Naclerio F. Physiological effects of microcurrent and its application for maximising acute responses and chronic adaptations to exercise. Eur J Appl Physiol. 2023;123:451–65.

Google Scholar 

Piras A, Zini L, Trofè A, Campa F, Raffi M. Effects of acute microcurrent electrical stimulation on muscle function and subsequent recovery strategy. Int J Environ Res Public Health. 2021;18:4597.

Article  Google Scholar 

Pieber K, Herceg M, Paternostro-Sluga T, Schuhfried O. Optimizing stimulation parameters in functional electrical stimulation of denervated muscles: a cross-sectional study. J Neuroeng Rehabil. 2015;12:1–7.

Article  Google Scholar 

Ni L, Yao Z, Zhao Y, Zhang T, Wang J, Li S, Chen Z. Electrical stimulation therapy for peripheral nerve injury. Front Neurol. 2023;14:1081458.

Article  Google Scholar 

Fu T, Jiang L, Peng Y, Li Z, Liu S, Lu J, Zhang F, Zhang J. Electrical muscle stimulation accelerates functional recovery after nerve injury. Neuroscience. 2020;426:179–88.

Article  Google Scholar 

Nair HK. Microcurrent as an adjunct therapy to accelerate chronic wound healing and reduce patient pain. J Wound Care. 2018;27:296–306.

Article  Google Scholar 

Yu C, Hu Z-Q, Peng R-Y. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review. Mil Med Res. 2014;1:1–8.

Google Scholar 

Xu X, Zhang H, Yan Y, Wang J, Guo L. Effects of electrical stimulation on skin surface. Acta Mech Sin. 2021;37:1843–71.

Article  Google Scholar 

Vance CG, Dailey DL, Rakel BA, Sluka KA. Using TENS for pain control: the state of the evidence. Pain Manag. 2014;4:197–209.

Article  Google Scholar 

Ando S, Takagi Y, Watanabe H, Mochizuki K, Sudo M, Fujibayashi M, Tsurugano S, Sato K. Effects of electrical muscle stimulation on cerebral blood flow. BMC Neurosci. 2021;22:1–7.

Article  Google Scholar 

Marquez-Chin C, Popovic MR. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. Biomed Eng Online. 2020;19:1–25.

Article  Google Scholar 

Chen C, Bai X, Ding Y, Lee I-S. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res. 2019;23:1–12.

Article  Google Scholar 

Heindel JJ, Newbold R, Schug TT. Endocrine disruptors and obesity. Nat Rev Endocrinol. 2015;11:653–61.

Article  Google Scholar 

Dolbow DR, Gorgey AS, Sutor TW, Bochkezanian V, Musselman K. Invasive and non-invasive approaches of electrical stimulation to improve physical functioning after spinal cord injury. J Clin Med. 2021;10:5356.

Article  Google Scholar 

Lee MJ, Chung YS. Spinal subarachnoid hematoma as a complication of an intramuscular stimulation: case report and a review of literatures. J Korean Neurosurg Soc. 2013;54:58–60.

Article  Google Scholar 

Yoon B-N, Ahn S-W, Kim J-E, Seok JM, Kim K-K, Kwon K-H, Park KD, Suh BC, Lim YM. Potential risks of nerve conduction Basic requrements for visual evoked studies and needle electromyography potentials. Ann Clin Neurophysiol. 2018;20:66–70.

Article  Google Scholar 

Cramp FL, Noble G, Lowe AS, Walsh DM, Willer JC. A controlled study on the effects of transcutaneous electrical nerve stimulation and interferential therapy upon the RIII nociceptive and H-reflexes in humans. Arch Phys Med Rehabil. 2000;81:324–33.

Article  Google Scholar 

de Tommaso M, Fiore P, Camporeale A, Guido M, Libro G, Losito L, Megna M, Puca F, Megna G. High and low frequency transcutaneous electrical nerve stimulation inhibits nociceptive responses induced by CO2 laser stimulation in humans. Neurosci Lett. 2003;342:17–20.

Article  Google Scholar 

Johnson M, Ashton C, Bousfield D, Thompson J. Analgesic effects of different frequencies of transcutaneous electrical nerve stimulation on cold-induced pain in normal subjects. Pain. 1989;39:231–6.

Article  Google Scholar 

Walsh DM, Lowe AS, McCormack K, Willer J-C, Baxter GD, Allen JM. Transcutaneous electrical nerve stimulation: effect on peripheral nerve conduction, mechanical pain threshold, and tactile threshold in humans. Arch Phys Med Rehabil. 1998;79:1051–8.

Article  Google Scholar 

Craig JA, Cunningham MB, Walsh DM, Baxter DG, Allen JM. Lack of effect of transcutaneous electrical nerve stimulation upon experimentally induced delayed onset muscle soreness in humans. Pain. 1996;67:285–9.

Article  Google Scholar 

Buchmuller A, Navez M, Milletre-Bernardin M, Pouplin S, Presles E, Lantéri-Minet M, Tardy B, Laurent B, Camdessanché J, Lombotens Trial Group. Value of TENS for relief of chronic low back pain with or without radicular pain. Eur J Pain. 2012;16:656–65.

Article  Google Scholar 

Prabhakar R, Ramteke G. Cervical spinal mobilization versus TENS in the management of cervical radiculopathy: a comparative, experimental, randomized controlled trial. Indian J Physiother Occup Ther. 2011;5:128–33.

Google Scholar 

Abu-Khaber HA, Abouelela AMZ, Abdelkarim EM. Effect of electrical muscle stimulation on prevention of ICU acquired muscle weakness and facilitating weaning from mechanical ventilation. Alex J Med. 2013;49:309–15.

Google Scholar 

Fossat G, Baudin F, Courtes L, Bobet S, Dupont A, Bretagnol A, Benzekri-Lefèvre D, Kamel T, Muller G, Bercault N. Effect of in-bed leg cycling and electrical stimulation of the quadriceps on global muscle strength in critically ill adults: A Randomized Clinical Trial. JAMA. 2018;320:368–78.

Article  Google Scholar 

Nakanishi N, Oto J, Tsutsumi R, Yamamoto T, Ueno Y, Nakataki E, Itagaki T, Sakaue H, Nishimura M. Effect of electrical muscle stimulation on upper and lower limb muscles in critically ill patients: a two-center randomized controlled trial. Crit Care Med. 2020;48:e997–1003.

Article  Google Scholar 

Nakamura K, Kihata A, Naraba H, Kanda N, Takahashi Y, Sonoo T, Hashimoto H, Morimura N. Efficacy of belt electrode skeletal muscle electrical stimulation on reducing the rate of muscle volume loss in critically ill patients: a randomized controlled trial. J Rehabil Med. 2019;51:705–11.

Article  Google Scholar 

Bouletreau P, Patricot M, Saudin F, Guiraud M, Mathian B. Effects of intermittent electrical stimulations on muscle catabolism in intensive care patients. J Parenter Enter Nutr. 1987;11:552–5.

Article  Google Scholar 

Rodriguez PO, Setten M, Maskin LP, Bonelli I, Vidomlansky SR, Attie S, Frosiani SL, Kozima S, Valentini R. Muscle weakness in septic patients requiring mechanical ventilation: protective effect of transcutaneous neuromuscular electrical stimulation. J Crit Care. 2012;27:319.e311-319.e318.

Article  Google Scholar 

Ralston KE, Harvey LA, Batty J, Lee BB, Ben M, Cusmiani R, Bennett J. Functional electrical stimulation cycling has no clear effect on urine output, lower limb swelling, and spasticity in people with spinal cord injury: a randomised cross-over trial. J Physiother. 2013;59:237–43.

Article  Google Scholar 

Fattal C, Sijobert B, Daubigney A, Fachin-Martins E, Lucas B, Casillas J-M, Azevedo C. Training with FES-assisted cycling in a subject with spinal cord injury: psychological, physical and physiological considerations. J Spinal Cord Med. 2020;43:402–13.

Article  Google Scholar 

Kuhn D, Leichtfried V, Schobersberger W. Four weeks of functional electrical stimulated cycling after spinal cord injury: a clinical cohort study. Int J Rehabil Res. 2014;37:243–50.

Article  Google Scholar 

Mazzoleni S, Battini E, Rustici A, Stampacchia G. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: preliminary results. In: Proceedings of the 2017 international conference on rehabilitation robotics (ICORR). 2017. pp. 289–93.

Mazzoleni S, Stampacchia G, Gerini A, Tombini T, Carrozza MC. FES-cycling training in spinal cord injured patients. In: Proceedings of the 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). 2013. pp. 5339–41.

Popović-Maneski L, Aleksić A, Metani A, Bergeron V, Čobeljić R, Popović DB. Assessment of spasticity by a pendulum test in SCI patients who exercise FES cycling or receive only conventional therapy. IEEE Trans Neural Syst Rehabil Eng. 2017;26:181–7.

Article  Google Scholar 

Sadowsky CL, Hammond ER, Strohl AB, Commean PK, Eby SA, Damiano DL, Wingert JR, Bae KT, McDonald JW. Lower extremity functional electrical stimulation cycling promotes physical and functional recovery in chronic spinal cord injury. J Spinal Cord Med. 2013;36:623–31.

Article  Google Scholar 

Stößlein BA, Kuypers KP. Self-rated recovery and mood before and after resistance training and muscle microcurrent application. Front Psychol. 2022;13:836695.

Article  Google Scholar 

Vilarinho R, Faria SM, Monteiro PRR, Melo C, Santos R, Noites A. Effects of abdominal microcurrent in the consumption and proportion of energy substrates during aerobic exercise: a pilot study. In: Proceedings of the healthcare. 2022. p. 917.

Naclerio F, Moreno-Perez D, Seijo M, Karsten B, Larrosa M, García-Merino JÁL, Thirkell J, Larumbe-Zabala E. Effects of adding post-workout microcurrent in males cross country athletes. Eur J Sport Sci. 2021;21:1708–17.

Article  Google Scholar 

Naclerio F, Seijo M, Karsten B, Brooker G, Carbone L, Thirkell J, Larumbe-Zabala E. Effectiveness of combining micr

Comments (0)

No login
gif