Recent progress in DNA data storage based on high-throughput DNA synthesis

Hilbert M, López P. The World’s Technological Capacity to Store, Communicate, and compute information. Science. 2011;332(6025):60–5. https://doi.org/10.1126/science.1200970.

Article  Google Scholar 

Kim SJ, Jung W-B, Jung HS, Lee M-H, Heo J, Horgan A, Godron X, Ham D. The bottom of the memory hierarchy: Semiconductor and DNA data storage. MRS Bull. 2023;48(5):547–59. https://doi.org/10.1557/s43577-023-00510-x.

Article  Google Scholar 

Bryan Bishop NM, Victor Zhirnov. Technology Working Group Meeting on future DNA synthesis technologies. Arlington, VA; 2017.

Lunt BM. How Long Is Long-Term Data Storage? Final Program and Proceedings; Conference Location.; 2011:29–33.

Al Kez D, Foley AM, Laverty D, Del Rio DF, Sovacool B. Exploring the sustainability challenges facing digitalization and internet data centers. J Clean Prod. 2022;371; https://doi.org/10.1016/j.jclepro.2022.133633.

Adamcik J, Witz G, Sekatskii SK, Dietler G, Klinov DV. Observation of single-stranded DNA on mica and highly oriented pyrolytic graphite by atomic force microscopy. FEBS Lett. 2006;580(24):5671–5. https://doi.org/10.1016/j.febslet.2006.09.017.

Article  Google Scholar 

Zhirnov V, Zadegan RM, Sandhu GS, Church GM, Hughes WL. Nucleic acid memory. Nat Mater. 2016;15(4):366–70. https://doi.org/10.1038/nmat4594.

Article  Google Scholar 

Zhao M, Wen J, Hu Q, Wei X, Zhong Y-W, Ruan H, Gu M. A 3D nanoscale optical disk memory with petabit capacity. Nature. 2024;626(8000):772–8. https://doi.org/10.1038/s41586-023-06980-y.

Article  Google Scholar 

van der Valk T, Pečnerová P, Díez-del-Molino D, Bergström A, Oppenheimer J, Hartmann S, Xenikoudakis G, Thomas JA, Dehasque M, Sağlıcan E, et al. Million-year-old DNA sheds light on the genomic history of mammoths. Nature. 2021;591(7849):265–9. https://doi.org/10.1038/s41586-021-03224-9.

Article  Google Scholar 

Baum EB. Building an associative memory vastly larger than the brain. Science. 1995;268(5210):583–5. https://doi.org/10.1126/science.7725109.

Article  Google Scholar 

Clelland CT, Risca V, Bancroft C. Hiding messages in DNA microdots. Nature. 1999;399(6736):533–4. https://doi.org/10.1038/21092.

Article  Google Scholar 

Feynman RP. There’s plenty of room at the bottom [data storage]. Journal of Microelectromechanical systems, Microelectromechanical Systems, Journal of. J Microelectromech Syst. 1992;1(1):60–6. https://doi.org/10.1109/84.128057.

Article  Google Scholar 

Davis J, Microvenus. Art J. 1996;55(1):70. https://doi.org/10.2307/777811.

Article  Google Scholar 

Church GM, Gao Y, Kosuri S. Next-Generation Digital Information Storage in DNA. Science. 2012;337(6102):1628–1628. https://doi.org/10.1126/science.1226355.

Article  Google Scholar 

Goldman N, Bertone P, Chen S, Dessimoz C, LeProust EM, Sipos B, Birney E. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature. 2013;494(7435):77–80. https://doi.org/10.1038/nature11875.

Article  Google Scholar 

Takahashi CN, Nguyen BH, Strauss K, Ceze L. Demonstration of end-to-end automation of DNA Data Storage. Sci Rep. 2019;9:4998. https://doi.org/10.1038/s41598-019-41228-8.

Article  Google Scholar 

Liu WT, Guo H, Wu JH. Effects of target length on the hybridization efficiency and specificity of rRNA-based oligonucleotide microarrays. Appl Environ Microbiol. 2007;73(1):73. https://doi.org/10.1128/AEM.01468-06. 82-82.

Article  Google Scholar 

Fan H, Wang J, Komiyama M, Liang X. Effects of secondary structures of DNA templates on the quantification of qPCR. J Biomol Struct Dyn. 2019;37(11):2867–74. https://doi.org/10.1080/07391102.2018.1498804.

Article  Google Scholar 

Van der Verren SE, Van Gerven N, Jonckheere W, Hambley R, Singh P, Kilgour J, Jordan M, Wallace EJ, Jayasinghe L, Remaut H. A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity. Nat Biotechnol. 2020. https://doi.org/10.1038/s41587-020-0570-8.

Article  Google Scholar 

Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB. Characterizing and measuring bias in sequence data. Genome Biol. 2013;14(5):1–20. https://doi.org/10.1186/gb-2013-14-5-r51.

Article  Google Scholar 

Blawat M, Gaedke K, Hütter I, Chen X-M, Turczyk B, Inverso S, Pruitt BW, Church GM. Procedia Comput Sci. 2016;80:1011–22. https://doi.org/10.1016/j.procs.2016.05.398. Forward Error Correction for DNA Data Storage.

Menachem A, Ori DR. An improved Huffman coding method for archiving text, images, and music characters in DNA. Biotechniques. 2009;47(3):747–54. https://doi.org/10.2144/000113218.

Article  Google Scholar 

Bornhol J, Lopez R, Carmean DM, Ceze L, Seelig G, Strauss K. A DNA-Based archival Storage System. ACM SIGPLAN NOTICES. 2016;51(4):637–49. https://doi.org/10.1145/2872362.2872397.

Article  Google Scholar 

Reed IS, Solomon G. Polynomial codes over certain Finite fields. J Soc Ind Appl Math. 1960;8(2):300–4.

Article  MathSciNet  Google Scholar 

Agrell E. Errata list for ‘Error Control Coding’ by Lin and Costello. 2011.

Erlich Y, Zielinski D. DNA fountain enables a robust and efficient storage architecture. Science. 2017;355(6328):950–4. https://doi.org/10.1126/science.aaj2038.

Article  Google Scholar 

MacKay DJC. Fountain codes. IEE Proceedings -- Communications. 2005;152(6):1062–1068; https://doi.org/10.1049/ip-com:20050237.

Wang Y, Noor-A-Rahim M, Zhang J, Gunawan E, Guan YL, Poh CL. High capacity DNA data storage with variable-length oligonucleotides using repeat accumulate code and hybrid mapping. J Biol Eng. 2019;13(1):89. https://doi.org/10.1186/s13036-019-0211-2.

Article  Google Scholar 

Lee H, Wiegand DJ, Griswold K, Punthambaker S, Chun H, Kohman RE, Church GM. Photon-directed multiplexed enzymatic DNA synthesis for molecular digital data storage. Nat Commun. 2020;11(1):5246. https://doi.org/10.1038/s41467-020-18681-5.

Article  Google Scholar 

Henry HL, Reza K, Naveen G, Jean B, George MC. Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nat Commun. 2019;10(1):1–12. https://doi.org/10.1038/s41467-019-10258-1.

Article  Google Scholar 

Alexander FS, Thuy JDN, Rikke AH, Martin BJ, Troels S, Kurt VG. On-demand synthesis of phosphoramidites. Nat Commun. 2021;12(1):1–7. https://doi.org/10.1038/s41467-021-22945-z.

Article  Google Scholar 

Schaller H, Weimann G, Lerch B, Khorana HG. Studies on polynucleotides. XXIV. The stepwise synthesis of specific deoxyribopolynucleotides (4). Protected derivatives of Deoxyribonucleosides and new syntheses of Deoxyribonucleoside-3′ phosphates. J Am Chem Soc. 1963;85(23):3821–7. https://doi.org/10.1021/ja00906a021.

Article  Google Scholar 

Beaucage SL, Caruthers MH. Deoxynucleoside phosphoramidites-A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 1981;22(20):1859. https://doi.org/10.1016/S0040-4039(01)90461-7. 1862-1862.

Article  Google Scholar 

Tener G. 2-Cyanoethyl phosphate and its use in the synthesis of phosphate esters. J Am Chem Soc. 1961;83(1):159. https://doi.org/10.1021/ja01462a032. 168-168.

Article  Google Scholar 

Pirrung MC, Bradley J-C. Comparison of methods for photochemical phosphoramidite-based DNA synthesis. J Org Chem. 1995;60(20):6270. https://doi.org/10.1021/jo00125a010.

Article  Google Scholar 

Kretschy N, Holik AK, Somoza V, Stengele KP, Somoza MM. Next-generation o-Nitrobenzyl Photolabile groups for Light-Directed Chemistry and microarray synthesis. Angew Chem Int Ed. 2015;54(29):8555–9. https://doi.org/10.1002/anie.201502125.

Article  Google Scholar 

Grajkowski A, CieŚLak J, Chmielewski MK, MarchÁN V, Phillips LR, Wilk A, Beaucage SL. Conceptual ‘Heat-Driven’ Approach to the synthesis of DNA oligonucleotides on microarrays. Ann N Y Acad Sci. 2003;1002(1):1–11. https://doi.org/10.1196/annals.1281.003.

Article  Google Scholar 

Septak M. Kinetic studies on depurination and detritylation of CPG-bound intermediates during oligonucleotide synthesis. Nucleic Acids Res. 1996;24(15):3053. https://doi.org/10.1093/nar/24.15.3053. -3058-3058.

Article  Google Scholar 

Lietard J, Somoza MM, Leger A, Erlich Y, Sadowski N, Timp W. Chemical and photochemical error rates in light-directed synthesis of complex DNA libraries. Nucleic Acids Res. 2021;49(12):6687–701. https://doi.org/10.1093/nar/gkab505.

Article  Google Scholar 

Vargeese C, Carter J, Yegge J, Krivjansky S, Settle A, Kropp E, Peterson K, Pieken W. Efficient activation of nucleoside phosphoramidites with 4,5-dicyanoimidazole during oligonucleotide synthesis. Nucleic Acids Res. 1998;26(4):1046–50. https://doi.org/10.1093/nar/26.4.1046.

Article  Google Scholar 

Caruthers MH. The Chemical synthesis of DNA/RNA: our gift to Science. J Biol Chem. 2013;288(2):1420–7. https://doi.org/10.1074/jbc.X112.442855.

Article  Google Scholar 

Beaucage SL. Strategies in the preparation of DNA oligonucleotide arrays for diagnostic applications. Curr Med Chem. 2001;8(10):1213–44. https://doi.org/10.2174/0929867013372463.

Article  Google Scholar 

LeProust E. Characterization of oligodeoxyribonucleotide synthesis on glass plates. Nucleic Acids Res. 2001;29(10):2171. https://doi.org/10.1093/nar/29.10.2171.

Article  Google Scholar 

David MJ, Lilley MGFE. Who will fill the gap by making nucleic synthesizers now? Nature. 2001;411(6833):15–15. https://doi.org/10.1038/35075244.

Article  Google Scholar 

Jobs M, Fredrikkson S, Brookes AJ, Landegren U. Effect of Oligonucleotide truncation on single-nucleotide distinction by solid-phase hybridization. Anal Chem. 2002;74(1):199. https://doi.org/10.1021/ac010555s.

Article  Google Scholar 

Blanchard AP, Hood L. Sequence to array: probing the genome’s secrets. Nat Biotechnol. 1996;14(12):1649–1649. https://doi.org/10.1038/nbt1296-1649.

Article  Google Scholar 

LeProust EM, Peck BJ, Spirin K, McCuen HB, Moore B, Namsaraev E, Caruthers MH. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res. 2010;38(8):2522–40. https://doi.org/10.1093/nar/gkq163.

Article  Google Scholar 

Tjong V, Yu H, Hucknall A, Rangarajan S, Chilkoti A. Amplified on-chip fluorescence detection of DNA hybridization by surface-initiated enzymatic polymerization. Anal Chem. 2011;83(13):5153–9. https://doi.org/10.1021/ac200946t.

Article  Google Scholar 

Tang L, Zauscher S, Tjong V, Chilkoti A, Li N, Yingling YG. Enzymatic polymerization of high molecular weight DNA amphiphiles that self-assemble into star-like micelles. Adv Mater. 2014;26(19):3050–4. https://doi.org/10.1002/adma.201306049.

Article  Google Scholar 

Tang L, Navarro LA, Zauscher S, Chilkoti A. High-molecular-weight polynucleotides by transferase-catalyzed living chain-growth polycondensation. Angewandte Chemie - Int Ed. 2017;56(24):6778–82. https://doi.org/10.1002/anie.2017

Comments (0)

No login
gif