Hilbert M, López P. The World’s Technological Capacity to Store, Communicate, and compute information. Science. 2011;332(6025):60–5. https://doi.org/10.1126/science.1200970.
Kim SJ, Jung W-B, Jung HS, Lee M-H, Heo J, Horgan A, Godron X, Ham D. The bottom of the memory hierarchy: Semiconductor and DNA data storage. MRS Bull. 2023;48(5):547–59. https://doi.org/10.1557/s43577-023-00510-x.
Bryan Bishop NM, Victor Zhirnov. Technology Working Group Meeting on future DNA synthesis technologies. Arlington, VA; 2017.
Lunt BM. How Long Is Long-Term Data Storage? Final Program and Proceedings; Conference Location.; 2011:29–33.
Al Kez D, Foley AM, Laverty D, Del Rio DF, Sovacool B. Exploring the sustainability challenges facing digitalization and internet data centers. J Clean Prod. 2022;371; https://doi.org/10.1016/j.jclepro.2022.133633.
Adamcik J, Witz G, Sekatskii SK, Dietler G, Klinov DV. Observation of single-stranded DNA on mica and highly oriented pyrolytic graphite by atomic force microscopy. FEBS Lett. 2006;580(24):5671–5. https://doi.org/10.1016/j.febslet.2006.09.017.
Zhirnov V, Zadegan RM, Sandhu GS, Church GM, Hughes WL. Nucleic acid memory. Nat Mater. 2016;15(4):366–70. https://doi.org/10.1038/nmat4594.
Zhao M, Wen J, Hu Q, Wei X, Zhong Y-W, Ruan H, Gu M. A 3D nanoscale optical disk memory with petabit capacity. Nature. 2024;626(8000):772–8. https://doi.org/10.1038/s41586-023-06980-y.
van der Valk T, Pečnerová P, Díez-del-Molino D, Bergström A, Oppenheimer J, Hartmann S, Xenikoudakis G, Thomas JA, Dehasque M, Sağlıcan E, et al. Million-year-old DNA sheds light on the genomic history of mammoths. Nature. 2021;591(7849):265–9. https://doi.org/10.1038/s41586-021-03224-9.
Baum EB. Building an associative memory vastly larger than the brain. Science. 1995;268(5210):583–5. https://doi.org/10.1126/science.7725109.
Clelland CT, Risca V, Bancroft C. Hiding messages in DNA microdots. Nature. 1999;399(6736):533–4. https://doi.org/10.1038/21092.
Feynman RP. There’s plenty of room at the bottom [data storage]. Journal of Microelectromechanical systems, Microelectromechanical Systems, Journal of. J Microelectromech Syst. 1992;1(1):60–6. https://doi.org/10.1109/84.128057.
Davis J, Microvenus. Art J. 1996;55(1):70. https://doi.org/10.2307/777811.
Church GM, Gao Y, Kosuri S. Next-Generation Digital Information Storage in DNA. Science. 2012;337(6102):1628–1628. https://doi.org/10.1126/science.1226355.
Goldman N, Bertone P, Chen S, Dessimoz C, LeProust EM, Sipos B, Birney E. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature. 2013;494(7435):77–80. https://doi.org/10.1038/nature11875.
Takahashi CN, Nguyen BH, Strauss K, Ceze L. Demonstration of end-to-end automation of DNA Data Storage. Sci Rep. 2019;9:4998. https://doi.org/10.1038/s41598-019-41228-8.
Liu WT, Guo H, Wu JH. Effects of target length on the hybridization efficiency and specificity of rRNA-based oligonucleotide microarrays. Appl Environ Microbiol. 2007;73(1):73. https://doi.org/10.1128/AEM.01468-06. 82-82.
Fan H, Wang J, Komiyama M, Liang X. Effects of secondary structures of DNA templates on the quantification of qPCR. J Biomol Struct Dyn. 2019;37(11):2867–74. https://doi.org/10.1080/07391102.2018.1498804.
Van der Verren SE, Van Gerven N, Jonckheere W, Hambley R, Singh P, Kilgour J, Jordan M, Wallace EJ, Jayasinghe L, Remaut H. A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity. Nat Biotechnol. 2020. https://doi.org/10.1038/s41587-020-0570-8.
Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB. Characterizing and measuring bias in sequence data. Genome Biol. 2013;14(5):1–20. https://doi.org/10.1186/gb-2013-14-5-r51.
Blawat M, Gaedke K, Hütter I, Chen X-M, Turczyk B, Inverso S, Pruitt BW, Church GM. Procedia Comput Sci. 2016;80:1011–22. https://doi.org/10.1016/j.procs.2016.05.398. Forward Error Correction for DNA Data Storage.
Menachem A, Ori DR. An improved Huffman coding method for archiving text, images, and music characters in DNA. Biotechniques. 2009;47(3):747–54. https://doi.org/10.2144/000113218.
Bornhol J, Lopez R, Carmean DM, Ceze L, Seelig G, Strauss K. A DNA-Based archival Storage System. ACM SIGPLAN NOTICES. 2016;51(4):637–49. https://doi.org/10.1145/2872362.2872397.
Reed IS, Solomon G. Polynomial codes over certain Finite fields. J Soc Ind Appl Math. 1960;8(2):300–4.
Article MathSciNet Google Scholar
Agrell E. Errata list for ‘Error Control Coding’ by Lin and Costello. 2011.
Erlich Y, Zielinski D. DNA fountain enables a robust and efficient storage architecture. Science. 2017;355(6328):950–4. https://doi.org/10.1126/science.aaj2038.
MacKay DJC. Fountain codes. IEE Proceedings -- Communications. 2005;152(6):1062–1068; https://doi.org/10.1049/ip-com:20050237.
Wang Y, Noor-A-Rahim M, Zhang J, Gunawan E, Guan YL, Poh CL. High capacity DNA data storage with variable-length oligonucleotides using repeat accumulate code and hybrid mapping. J Biol Eng. 2019;13(1):89. https://doi.org/10.1186/s13036-019-0211-2.
Lee H, Wiegand DJ, Griswold K, Punthambaker S, Chun H, Kohman RE, Church GM. Photon-directed multiplexed enzymatic DNA synthesis for molecular digital data storage. Nat Commun. 2020;11(1):5246. https://doi.org/10.1038/s41467-020-18681-5.
Henry HL, Reza K, Naveen G, Jean B, George MC. Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nat Commun. 2019;10(1):1–12. https://doi.org/10.1038/s41467-019-10258-1.
Alexander FS, Thuy JDN, Rikke AH, Martin BJ, Troels S, Kurt VG. On-demand synthesis of phosphoramidites. Nat Commun. 2021;12(1):1–7. https://doi.org/10.1038/s41467-021-22945-z.
Schaller H, Weimann G, Lerch B, Khorana HG. Studies on polynucleotides. XXIV. The stepwise synthesis of specific deoxyribopolynucleotides (4). Protected derivatives of Deoxyribonucleosides and new syntheses of Deoxyribonucleoside-3′ phosphates. J Am Chem Soc. 1963;85(23):3821–7. https://doi.org/10.1021/ja00906a021.
Beaucage SL, Caruthers MH. Deoxynucleoside phosphoramidites-A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 1981;22(20):1859. https://doi.org/10.1016/S0040-4039(01)90461-7. 1862-1862.
Tener G. 2-Cyanoethyl phosphate and its use in the synthesis of phosphate esters. J Am Chem Soc. 1961;83(1):159. https://doi.org/10.1021/ja01462a032. 168-168.
Pirrung MC, Bradley J-C. Comparison of methods for photochemical phosphoramidite-based DNA synthesis. J Org Chem. 1995;60(20):6270. https://doi.org/10.1021/jo00125a010.
Kretschy N, Holik AK, Somoza V, Stengele KP, Somoza MM. Next-generation o-Nitrobenzyl Photolabile groups for Light-Directed Chemistry and microarray synthesis. Angew Chem Int Ed. 2015;54(29):8555–9. https://doi.org/10.1002/anie.201502125.
Grajkowski A, CieŚLak J, Chmielewski MK, MarchÁN V, Phillips LR, Wilk A, Beaucage SL. Conceptual ‘Heat-Driven’ Approach to the synthesis of DNA oligonucleotides on microarrays. Ann N Y Acad Sci. 2003;1002(1):1–11. https://doi.org/10.1196/annals.1281.003.
Septak M. Kinetic studies on depurination and detritylation of CPG-bound intermediates during oligonucleotide synthesis. Nucleic Acids Res. 1996;24(15):3053. https://doi.org/10.1093/nar/24.15.3053. -3058-3058.
Lietard J, Somoza MM, Leger A, Erlich Y, Sadowski N, Timp W. Chemical and photochemical error rates in light-directed synthesis of complex DNA libraries. Nucleic Acids Res. 2021;49(12):6687–701. https://doi.org/10.1093/nar/gkab505.
Vargeese C, Carter J, Yegge J, Krivjansky S, Settle A, Kropp E, Peterson K, Pieken W. Efficient activation of nucleoside phosphoramidites with 4,5-dicyanoimidazole during oligonucleotide synthesis. Nucleic Acids Res. 1998;26(4):1046–50. https://doi.org/10.1093/nar/26.4.1046.
Caruthers MH. The Chemical synthesis of DNA/RNA: our gift to Science. J Biol Chem. 2013;288(2):1420–7. https://doi.org/10.1074/jbc.X112.442855.
Beaucage SL. Strategies in the preparation of DNA oligonucleotide arrays for diagnostic applications. Curr Med Chem. 2001;8(10):1213–44. https://doi.org/10.2174/0929867013372463.
LeProust E. Characterization of oligodeoxyribonucleotide synthesis on glass plates. Nucleic Acids Res. 2001;29(10):2171. https://doi.org/10.1093/nar/29.10.2171.
David MJ, Lilley MGFE. Who will fill the gap by making nucleic synthesizers now? Nature. 2001;411(6833):15–15. https://doi.org/10.1038/35075244.
Jobs M, Fredrikkson S, Brookes AJ, Landegren U. Effect of Oligonucleotide truncation on single-nucleotide distinction by solid-phase hybridization. Anal Chem. 2002;74(1):199. https://doi.org/10.1021/ac010555s.
Blanchard AP, Hood L. Sequence to array: probing the genome’s secrets. Nat Biotechnol. 1996;14(12):1649–1649. https://doi.org/10.1038/nbt1296-1649.
LeProust EM, Peck BJ, Spirin K, McCuen HB, Moore B, Namsaraev E, Caruthers MH. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res. 2010;38(8):2522–40. https://doi.org/10.1093/nar/gkq163.
Tjong V, Yu H, Hucknall A, Rangarajan S, Chilkoti A. Amplified on-chip fluorescence detection of DNA hybridization by surface-initiated enzymatic polymerization. Anal Chem. 2011;83(13):5153–9. https://doi.org/10.1021/ac200946t.
Tang L, Zauscher S, Tjong V, Chilkoti A, Li N, Yingling YG. Enzymatic polymerization of high molecular weight DNA amphiphiles that self-assemble into star-like micelles. Adv Mater. 2014;26(19):3050–4. https://doi.org/10.1002/adma.201306049.
Tang L, Navarro LA, Zauscher S, Chilkoti A. High-molecular-weight polynucleotides by transferase-catalyzed living chain-growth polycondensation. Angewandte Chemie - Int Ed. 2017;56(24):6778–82. https://doi.org/10.1002/anie.2017
Comments (0)