Pradhan R, Singh AK, Kumar P, Bajpai S, Pathak M, Chatterjee P, Dwivedi S, Dey AB, Dey S. Blood circulatory level of seven sirtuins in Alzheimer’s disease: potent biomarker based on translational research. Mol Neurobiol. 2022;59(3):1440–51.
Article CAS PubMed Google Scholar
Scarano S, Lisi S, Ravelet C, Peyrin E, Minunni M. Detecting Alzheimer’s disease biomarkers: from antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms—a critical review. Anal Chim Acta. 2016;940:21–37.
Article CAS PubMed Google Scholar
Zeng Y, Huang Z, Liu Y, Xu T. Printed biosensors for the detection of Alzheimer’s disease based on blood biomarkers. J Anal Test. 2023. https://doi.org/10.1007/s41664-023-00277-9.
Kim S, Wark AW, Lee HJ. Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance. Anal Chem. 2016;88(15):7793–9.
Article CAS PubMed Google Scholar
Špringer T, Hemmerová E, Finocchiaro G, Krištofiková Z, Vyhnálek M, Homola J. Surface plasmon resonance biosensor for the detection of tau-amyloid β complex. Sens Actuators B. 2020;316: 128146.
Kim K, Lee CH, Park CB. Chemical sensing platforms for detecting trace-level Alzheimer’s core biomarkers. Chem Soc Rev. 2020;49(15):5446–72.
Article CAS PubMed Google Scholar
Song L, Lachno DR, Hanlon D, Shepro A, Jeromin A, Gemani D, Talbot JA, Racke MM, Dage JL, Dean RA. A digital enzyme-linked immunosorbent assay for ultrasensitive measurement of amyloid-β 1–42 peptide in human plasma with utility for studies of Alzheimer’s disease therapeutics. Alzheimer’s Res Ther. 2016;8(1):58.
Wu L, Ji H, Sun H, Ding C, Ren J, Qu X. Label-free ratiometric electrochemical detection of the mutated apolipoprotein E gene associated with Alzheimer’s disease. Chem Commun. 2016;52(81):12080–3.
Fernández-Cabada T, Ramos-Gómez M. A novel contrast agent based on magnetic nanoparticles for cholesterol detection as Alzheimer’s disease biomarker. Nanoscale Res Lett. 2019;14(1):36.
Article PubMed PubMed Central Google Scholar
Ren X, Yan J, Wu D, Wei Q, Wan Y. Nanobody-based apolipoprotein E immunosensor for point-of-care testing. ACS Sens. 2017;2(9):1267–71.
Article CAS PubMed Google Scholar
He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc. 2000;122(38):9071–7.
Liu B, Liu X, Shi S, Huang R, Su R, Qi W, He Z. Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomater. 2016;40:100–18.
Article CAS PubMed Google Scholar
Wang Q, Ren Z-H, Zhao W-M, Wang L, Yan X, Zhu A-S, Qiu F-M, Zhang K-K. Research advances on surface plasmon resonance biosensors. Nanoscale. 2022;14(3):564–91.
Article CAS PubMed Google Scholar
Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108:462–93.
Article CAS PubMed Google Scholar
Diao W, Tang M, Ding S, Li X, Cheng W, Mo F, Yan X, Ma H, Yan Y. Highly sensitive surface plasmon resonance biosensor for the detection of HIV-related DNA based on dynamic and structural DNA nanodevices. Biosens Bioelectron. 2018;100:228–34.
Article CAS PubMed Google Scholar
Ravindran N, Kumar S, Yashini M, Rajeshwari S, Manmathi CA, Thirunavookarasu NS, Sunil CK. Recent advances in surface plasmon resonance (SPR) biosensors for food analysis: a review. Crit Rev Food Sci Nutr. 2023;63(8):1055–77.
Article CAS PubMed Google Scholar
Yi X, Feng C, Hu S, Li H, Wang J. Surface plasmon resonance biosensors for simultaneous monitoring of amyloid-beta oligomers and fibrils and screening of select modulators. Analyst. 2016;141(1):331–6.
Article CAS PubMed Google Scholar
Chen S, He Y, Liu L, Wang J, Yi X. DNA walking system integrated with enzymatic cleavage reaction for sensitive surface plasmon resonance detection of miRNA. Sci Rep. 2022;12(1): 12093.
He P, Liu L, Qiao W, Zhang S. Ultrasensitive detection of thrombin using surface plasmon resonance and quartz crystal microbalance sensors by aptamer-based rolling circle amplification and nanoparticle signal enhancement. Chem Commun. 2014;50(12):1481–4.
Yi X, Zhang Y, Gong M, Yu X, Darabedian N, Zheng J, Zhou F. Ca2+ interacts with Glu-22 of Aβ(1–42) and phospholipid bilayers to accelerate the Aβ(1–42) aggregation below the critical micelle concentration. Biochemistry. 2015;54(41):6323–32.
Article CAS PubMed Google Scholar
Riedel T, RiedelovaReicheltova Z, Majek P, Rodriguez Emmenegger C, Houska M, Dyr JE, Brynda E. Complete identification of proteins responsible for human blood plasma fouling on poly(ethylene glycol)-based surfaces. Langmuir. 2013;29(10):3388–97.
Article CAS PubMed Google Scholar
Vaisocherova-Lisalova H, Surman F, Visova I, Vala M, Springer T, Ermini ML, Sipova H, Sedivak P, Houska M, Riedel T, Pop-Georgievski O, Brynda E, Homola J. Copolymer brush-based ultralow-fouling biorecognition surface platform for food safety. Anal Chem. 2016;88(21):10533–9.
Article CAS PubMed Google Scholar
Lisalova H, Brynda E, Houska M, Visova I, Mrkvova K, Song XC, Gedeonova E, Surman F, Riedel T, Pop-Georgievski O, Homola J. Ultralow-fouling behavior of biorecognition coatings based on carboxy-functional brushes of zwitterionic homo- and copolymers in blood plasma: functionalization matters. Anal Chem. 2017;89(6):3524–31.
Article CAS PubMed Google Scholar
Chiang C-Y, Chen C-H, Wu C-W. Fiber optic localized surface plasmon resonance sensor based on carboxymethylated dextran modified gold nanoparticles surface for high mobility group Box 1 (HMGB1) analysis. Biosensors. 2023;13(5):522.
Article CAS PubMed PubMed Central Google Scholar
D’Agata R, Bellassai N, Giuffrida MC, Aura AM, Petri C, Kögler P, Vecchio G, Jonas U, Spoto G. A new ultralow fouling surface for the analysis of human plasma samples with surface plasmon resonance. Talanta. 2021;221: 121483.
Xia Y, Wu L, Hu Y, He Y, Cao Z, Zhu X, Yi X, Wang J. Sensitive surface plasmon resonance detection of methyltransferase activity and screening of its inhibitors amplified by p53 protein bound to methylation-specific ds-DNA consensus sites. Biosens Bioelectron. 2019;126:269–74.
Article CAS PubMed Google Scholar
Liu X, Huang R, Su R, Qi W, Wang L, He Z. Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors. ACS Appl Mater Interfaces. 2014;6(15):13034–42.
Article CAS PubMed Google Scholar
Nie W, Wang Q, Zou L, Zheng Y, Liu X, Yang X, Wang K. Low-fouling surface plasmon resonance sensor for highly sensitive detection of microRNA in a complex matrix based on the DNA tetrahedron. Anal Chem. 2018;90(21):12584–91.
Article CAS PubMed Google Scholar
Liu L, Chang Y, Ji X, Chen J, Zhang M, Yang S. Surface-tethered electrochemical biosensor for telomerase detection by integration of homogeneous extension and hybridization reactions. Talanta. 2023;253: 123597.
Article CAS PubMed Google Scholar
Xia N, Wu D, Sun T, Wang Y, Ren X, Zhao F, Liu L, Yi X. Magnetic bead-based electrochemical and colorimetric methods for the detection of poly(ADP-ribose) polymerase-1 with boronic acid derivatives as the signal probes. Sens Actuators B. 2021;327: 128913.
Shen J, Jiang X, Xu L, Ge Z, Li Q, Song B, Wang L, Song S. Poly-adenine-engineered gold nanogaps for SERS nanostructures. ACS Appl Mater Interfaces. 2019;2(6):3501–9.
Xia N, Huang Y, Zhao Y, Wang F, Liu L, Sun Z. Electrochemical biosensors by in situ dissolution of self-assembled nanolabels into small monomers on electrode surface. Sens Actuators B. 2020;325: 128777.
Ding X, Yan Y, Li S, Zhang Y, Cheng W, Cheng Q, Ding S. Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification. Anal Chim Acta. 2015;874:59–65.
Article CAS PubMed Google Scholar
Zhang D, Yan Y, Cheng W, Zhang W, Li Y, Ju H, Ding S. Streptavidin-enhanced surface plasmon resonance biosensor for highly sensitive and specific detection of microRNA. Microchim Acta. 2013;180:397–403.
Xia N, Huang Y, Cui Z, Liu S, Deng D, Liu L, Wang J. Impedimetric biosensor for assay of caspase-3 activity and evaluation of cell apoptosis using self-assembled biotin–phenylalanine network as signal enhancer. Sens Actuators B. 2020;320: 128436.
Liu L, Deng D, Wu D, Hou W, Wang L, Li N, Sun Z. Duplex-specific nuclease-based electrochemical biosensor for the detection of microRNAs by conversion of homogeneous assay into surface-tethered electrochemical analysis. Anal Chim Acta. 2021;1149: 338199.
Article CAS PubMed Google Scholar
Xia N, Sun T, Liu L, Tian L, Sun Z. Heterogeneous sensing of post-translational modification enzymes by integrating the advantage of homogeneous analysis. Talanta. 2022;237: 122949.
Comments (0)