Songa EA, Okonkwo JO. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: a review. Talanta. 2016;155:289–304.
Article CAS PubMed Google Scholar
Costanzi S, Machado JH, Mitchell M. Nerve agents: what they are, how they work, how to counter them. ACS Chem Neurosci. 2018;9(5):873–85.
Article CAS PubMed Google Scholar
Ishaaya I. Biochemical sites of insecticide action and resistance. Berlin, Heidelberg: Springer; 2001. p. 221–38.
Balamurugan A, Lee HI. A visible light responsive on–off polymeric photoswitch for the colorimetric detection of nerve agent mimics in solution and in the vapor phase. Macromolecules. 2016;49(7):2568–74.
Sinha PK, Sharma AJ. Organophosphate poisoning: a review. Med J Indones. 2003;12:120–6.
Martinez RC, Gonzalo ER, Moran MA, Mendez JH. Sensitive method for the determination of organophosphorus pesticides in fruits and surface waters by high-performance liquid chromatography with ultraviolet detection. J Chromatogr A. 1992;607(1):37–45.
Puton J, Namieśnik J. Ion mobility spectrometry: Current status and application for chemical warfare agents detection. TrAC Trend Anal Chem. 2016;85:10–20.
Hill HH Jr, Martin SJ. Conventional analytical methods for chemical warfare agents. Pure Appl Chem. 2002;74(12):2281–91.
Goswami S, Manna A, Paul S. Rapid ‘naked eye’response of DCP, a nerve agent simulant: from molecules to low-cost devices for both liquid and vapour phase detection. RSC Adv. 2014;4(42):21984–8.
Chen L, Wu D, Yoon J. Recent advances in the development of chromophore-based chemosensors for nerve agents and phosgene. ACS Sens. 2018;3(1):27–43.
Article CAS PubMed Google Scholar
Zheng P, Cui Z, Liu H, Cao W, Li F, Zhang M. Ultrafast-response, highly-sensitive and recyclable colorimetric/fluorometric dual-channel chemical warfare agent probes. J Hazard Mater. 2021;415: 125619.
Article CAS PubMed Google Scholar
Fu Y, Yu J, Wang K, Liu H, Yu Y, Liu A, Peng X, He Q, Cao H, Cheng J. Simple and efficient chromophoric-fluorogenic probes for diethylchlorophosphate vapor. ACS Sens. 2018;3(8):1445–50.
Article CAS PubMed Google Scholar
Royo S, Costero AM, Parra M, Gil S, Martinez-Manez R, Sancenon F. Chromogenic, specific detection of the nerve-agent mimic DCNP (a tabun mimic). Eur J Chem. 2011;17(25):6931–4.
Kasimogullari BO, Cesur Z. Fused heterocycles: synthesis of some new imidazo [1, 2-a]-pyridine derivatives. Molecules. 2004;9(10):894–901.
Article CAS PubMed PubMed Central Google Scholar
Krause M, Foks H, Gobis K. Pharmacological potential and synthetic approaches of imidazo [4, 5-b] pyridine and imidazo [4, 5-c] pyridine derivatives. Molecules. 2017;22(3):399.
Article PubMed PubMed Central Google Scholar
Thakur A, Chaudhran PA, Sharma A. Simple and efficient PET and AIEE mechanism-based fluorescent probes for sensing Tabun mimic DCNP. Anal Chim Acta. 2023;1239: 340727.
Article CAS PubMed Google Scholar
Gori M, Thakur A, Sharma A, Flora SJ. Organic-molecule-based fluorescent chemosensor for nerve agents and organophosphorus pesticides. Topics Curr Chem. 2021;379:1–55.
Thakur A, Gori M, Sharma A. Synthetic fluorescent organic molecule for the detection of diethylcyanophosphonate via on-off sensing mechanism: paper strips system for real-time application. Int J Environ Anal Chem. 2022;19:1–4.
Thakur A, Sharma A. Imidazo [1, 2-a] pyridine based small organic fluorescent molecules for selective detection of nerve agents simulants. Spectrochimica Acta A. 2022;282: 121633.
Gupta M, Lee HI. A dual responsive molecular probe for the efficient and selective detection of nerve agent mimics and copper (II) ions with controllable detection time. Sens Actuators B-Chem. 2017;242:977–82.
Radić Z, Dale T, Kovarik Z, Berend S, Garcia E, Zhang L, Amitai G, Green C, Radić B, Duggan BM, Ajami D. Catalytic detoxification of nerve agent and pesticide organophosphates by butyrylcholinesterase assisted with non-pyridinium oximes. Biochem J. 2013;450(1):231–42.
Martins CD, Raposo MM, Costa SP. Synthesis and evaluation of an Azo dye for the chromogenic detection of metal cations. Chem Proceed. 2022;12(1):26.
Kirschenbaum LJ, Kustin K. Kinetics of copper (II)–ethylenediamine complex formation. J Chem Soc A. 1970;684–8.
Naimhwaka J, Uahengo V. A naphthoquinone based colorimetric probe for real-time naked eye detection of biologically important anions including cyanide ions in tap water: experimental and theoretical studies. RSC Adv. 2019;9(65):37926–38.
Article CAS PubMed PubMed Central Google Scholar
HeeáLee M, SeungáKim J. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev. 2015;44(13):4185–91.
Long GL, Winefordner JD. Limit of detection. A closer look at the IUPAC definition. Anal Chem. 1983;55(7):712A-724A.
Ali SS, Gangopadhyay A, Pramanik AK, Guria UN, Samanta SK, Mahapatra AK. Ratiometric sensing of nerve agent mimic DCP through in situ benzisoxazole formation. Dyes Pigments. 2019;170: 107585.
Ren Y, Yamataka H. The α-effect in gas-phase SN2 reactions: existence and the origin of the effect. J Org Chem. 2007;72(15):5660–7.
Article CAS PubMed Google Scholar
Lee H, Kim HJ. Novel fluorescent probe for the selective detection of organophosphorous nerve agents through a cascade reaction from oxime to nitrile via isoxazole. Tetrahedron. 2014;70(18):2966–70.
Lee JY, Lee YH, Byun YG. Detection of chemical warfare nerve agents via a beckmann fragmentation of aldoxime. Phosphorus Sulfur Silicon Relat Elem. 2012;187(5):641–9.
Royo S, Costero AM, Parra M, Gil S, Martínez-Máñez R, Sancenón F. Chromogenic, specific detection of the nerve-agent mimic DCNP (a tabun mimic). Chemistry—A Eur J. 2011;17(25):6931–4.
Silva GL, Ediz V, Yaron D, Armitage BA. Experimental and computational investigation of unsymmetrical cyanine dyes: understanding torsionally responsive fluorogenic dyes. J Am Chem Soc. 2007;129(17):5710–8.
Article CAS PubMed PubMed Central Google Scholar
Li SS, Zheng YC, Zhu XM, Wang HB, Liang LH, Wang XZ, Yuan L, Zhang FH, Zheng H, Zhao CL. A novel BODIPY-based fluorescent probe for sensitive and selective detection of nerve agent simulants through base-assisted photo-induced electron transfer process. Sens Actuators B. 2021;337: 129804.
Comments (0)