Colorimetric Sensor for Detection of Tabun Mimic Diethyl Cyanophosphonate

Songa EA, Okonkwo JO. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: a review. Talanta. 2016;155:289–304.

Article  CAS  PubMed  Google Scholar 

Costanzi S, Machado JH, Mitchell M. Nerve agents: what they are, how they work, how to counter them. ACS Chem Neurosci. 2018;9(5):873–85.

Article  CAS  PubMed  Google Scholar 

Ishaaya I. Biochemical sites of insecticide action and resistance. Berlin, Heidelberg: Springer; 2001. p. 221–38.

Balamurugan A, Lee HI. A visible light responsive on–off polymeric photoswitch for the colorimetric detection of nerve agent mimics in solution and in the vapor phase. Macromolecules. 2016;49(7):2568–74.

Article  CAS  Google Scholar 

Sinha PK, Sharma AJ. Organophosphate poisoning: a review. Med J Indones. 2003;12:120–6.

Article  Google Scholar 

Martinez RC, Gonzalo ER, Moran MA, Mendez JH. Sensitive method for the determination of organophosphorus pesticides in fruits and surface waters by high-performance liquid chromatography with ultraviolet detection. J Chromatogr A. 1992;607(1):37–45.

Article  Google Scholar 

Puton J, Namieśnik J. Ion mobility spectrometry: Current status and application for chemical warfare agents detection. TrAC Trend Anal Chem. 2016;85:10–20.

Article  CAS  Google Scholar 

Hill HH Jr, Martin SJ. Conventional analytical methods for chemical warfare agents. Pure Appl Chem. 2002;74(12):2281–91.

Article  CAS  Google Scholar 

Goswami S, Manna A, Paul S. Rapid ‘naked eye’response of DCP, a nerve agent simulant: from molecules to low-cost devices for both liquid and vapour phase detection. RSC Adv. 2014;4(42):21984–8.

Article  CAS  Google Scholar 

Chen L, Wu D, Yoon J. Recent advances in the development of chromophore-based chemosensors for nerve agents and phosgene. ACS Sens. 2018;3(1):27–43.

Article  CAS  PubMed  Google Scholar 

Zheng P, Cui Z, Liu H, Cao W, Li F, Zhang M. Ultrafast-response, highly-sensitive and recyclable colorimetric/fluorometric dual-channel chemical warfare agent probes. J Hazard Mater. 2021;415: 125619.

Article  CAS  PubMed  Google Scholar 

Fu Y, Yu J, Wang K, Liu H, Yu Y, Liu A, Peng X, He Q, Cao H, Cheng J. Simple and efficient chromophoric-fluorogenic probes for diethylchlorophosphate vapor. ACS Sens. 2018;3(8):1445–50.

Article  CAS  PubMed  Google Scholar 

Royo S, Costero AM, Parra M, Gil S, Martinez-Manez R, Sancenon F. Chromogenic, specific detection of the nerve-agent mimic DCNP (a tabun mimic). Eur J Chem. 2011;17(25):6931–4.

Article  CAS  Google Scholar 

Kasimogullari BO, Cesur Z. Fused heterocycles: synthesis of some new imidazo [1, 2-a]-pyridine derivatives. Molecules. 2004;9(10):894–901.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krause M, Foks H, Gobis K. Pharmacological potential and synthetic approaches of imidazo [4, 5-b] pyridine and imidazo [4, 5-c] pyridine derivatives. Molecules. 2017;22(3):399.

Article  PubMed  PubMed Central  Google Scholar 

Thakur A, Chaudhran PA, Sharma A. Simple and efficient PET and AIEE mechanism-based fluorescent probes for sensing Tabun mimic DCNP. Anal Chim Acta. 2023;1239: 340727.

Article  CAS  PubMed  Google Scholar 

Gori M, Thakur A, Sharma A, Flora SJ. Organic-molecule-based fluorescent chemosensor for nerve agents and organophosphorus pesticides. Topics Curr Chem. 2021;379:1–55.

Article  Google Scholar 

Thakur A, Gori M, Sharma A. Synthetic fluorescent organic molecule for the detection of diethylcyanophosphonate via on-off sensing mechanism: paper strips system for real-time application. Int J Environ Anal Chem. 2022;19:1–4.

Article  Google Scholar 

Thakur A, Sharma A. Imidazo [1, 2-a] pyridine based small organic fluorescent molecules for selective detection of nerve agents simulants. Spectrochimica Acta A. 2022;282: 121633.

Article  CAS  Google Scholar 

Gupta M, Lee HI. A dual responsive molecular probe for the efficient and selective detection of nerve agent mimics and copper (II) ions with controllable detection time. Sens Actuators B-Chem. 2017;242:977–82.

Article  CAS  Google Scholar 

Radić Z, Dale T, Kovarik Z, Berend S, Garcia E, Zhang L, Amitai G, Green C, Radić B, Duggan BM, Ajami D. Catalytic detoxification of nerve agent and pesticide organophosphates by butyrylcholinesterase assisted with non-pyridinium oximes. Biochem J. 2013;450(1):231–42.

Article  PubMed  Google Scholar 

Martins CD, Raposo MM, Costa SP. Synthesis and evaluation of an Azo dye for the chromogenic detection of metal cations. Chem Proceed. 2022;12(1):26.

Google Scholar 

Kirschenbaum LJ, Kustin K. Kinetics of copper (II)–ethylenediamine complex formation. J Chem Soc A. 1970;684–8.

Naimhwaka J, Uahengo V. A naphthoquinone based colorimetric probe for real-time naked eye detection of biologically important anions including cyanide ions in tap water: experimental and theoretical studies. RSC Adv. 2019;9(65):37926–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

HeeáLee M, SeungáKim J. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev. 2015;44(13):4185–91.

Article  Google Scholar 

Long GL, Winefordner JD. Limit of detection. A closer look at the IUPAC definition. Anal Chem. 1983;55(7):712A-724A.

CAS  Google Scholar 

Ali SS, Gangopadhyay A, Pramanik AK, Guria UN, Samanta SK, Mahapatra AK. Ratiometric sensing of nerve agent mimic DCP through in situ benzisoxazole formation. Dyes Pigments. 2019;170: 107585.

Article  CAS  Google Scholar 

Ren Y, Yamataka H. The α-effect in gas-phase SN2 reactions: existence and the origin of the effect. J Org Chem. 2007;72(15):5660–7.

Article  CAS  PubMed  Google Scholar 

Lee H, Kim HJ. Novel fluorescent probe for the selective detection of organophosphorous nerve agents through a cascade reaction from oxime to nitrile via isoxazole. Tetrahedron. 2014;70(18):2966–70.

Article  CAS  Google Scholar 

Lee JY, Lee YH, Byun YG. Detection of chemical warfare nerve agents via a beckmann fragmentation of aldoxime. Phosphorus Sulfur Silicon Relat Elem. 2012;187(5):641–9.

Article  CAS  Google Scholar 

Royo S, Costero AM, Parra M, Gil S, Martínez-Máñez R, Sancenón F. Chromogenic, specific detection of the nerve-agent mimic DCNP (a tabun mimic). Chemistry—A Eur J. 2011;17(25):6931–4.

Article  CAS  Google Scholar 

Silva GL, Ediz V, Yaron D, Armitage BA. Experimental and computational investigation of unsymmetrical cyanine dyes: understanding torsionally responsive fluorogenic dyes. J Am Chem Soc. 2007;129(17):5710–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li SS, Zheng YC, Zhu XM, Wang HB, Liang LH, Wang XZ, Yuan L, Zhang FH, Zheng H, Zhao CL. A novel BODIPY-based fluorescent probe for sensitive and selective detection of nerve agent simulants through base-assisted photo-induced electron transfer process. Sens Actuators B. 2021;337: 129804.

Article  CAS  Google Scholar 

Comments (0)

No login
gif