Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, et al. Infectious disease in an era of global change. Nat Rev Microbiol. 2022;20:193–205.
Article CAS PubMed Google Scholar
Bloom DE, Cadarette D. Infectious Disease threats in the twenty-first century: strengthening the global response. Front Immunol. 2019;10:549.
Article PubMed PubMed Central Google Scholar
Piret J, Boivin G. Pandemics throughout history. Front Microbiol. 2020;11:631736.
Wolfe ND, Dunavan CP, Diamond J. Origins of major human infectious diseases. Nature. 2007;447:279–83.
Article CAS PubMed PubMed Central Google Scholar
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–58.
Article CAS PubMed PubMed Central Google Scholar
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109:309–18.
Article PubMed PubMed Central Google Scholar
Larkin H. Increasing antimicrobial resistance poses global threat, WHO says. JAMA 2023;329:200.
Cameron A, Esiovwa R, Connolly J, Hursthouse A, Henriquez F. Antimicrobial resistance as a global health threat: the need to learn lessons from the COVID-19 pandemic. Glob Policy. 2022;13:179–92.
Article PubMed PubMed Central Google Scholar
EclinicalMedicine. Antimicrobial resistance: a top ten global public health threat. EClinicalMedicine. 2021;41:101221.
Article CAS PubMed PubMed Central Google Scholar
de Kraker ME, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016;13:e1002184.
Article PubMed PubMed Central Google Scholar
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.
Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Høiby N, et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol. 2012;10:841–51.
Article CAS PubMed Google Scholar
Jurado-Martin I, Sainz-Mejias M, McClean S. Pseudomonas aeruginosa: an audacious pathogen with an adaptable arsenal of virulence factors. Int J Mol Sci. 2021;22:3128.
Article CAS PubMed PubMed Central Google Scholar
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7:199.
Article CAS PubMed PubMed Central Google Scholar
Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: infections, animal modeling, and therapeutics. Cells. 2023;12:199.
Article CAS PubMed PubMed Central Google Scholar
Gellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013;67:159–73.
Article CAS PubMed Google Scholar
Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2000;2:1051–60.
Article CAS PubMed Google Scholar
Yin R, Cheng J, Wang J, Li P, Lin J. Treatment of Pseudomonas aeruginosa infectious biofilms: challenges and strategies. Front Microbiol. 2022;13:955286.
Article PubMed PubMed Central Google Scholar
Davies O, Bennett S. WHO publishes list of bacteria for which new antibiotics are urgently needed. WHO Newsletters. 2017.
Jayaraman N, Mahapa A, Samanta G, Maiti K, Chatterji D. Mannopyranoside glycolipids inhibit mycobacterial growth, biofilm and potentiate isoniazid inhibition activities in M. smegmatis. ChemBioChem. 2019;20:1966–76.
Dolan SK. Current knowledge and future directions in developing strategies to combat Pseudomonas aeruginosa Infection. J Mol Biol. 2020;432:5509–28.
Article CAS PubMed Google Scholar
Verderosa AD, Totsika M, Fairfull-Smith KE. Bacterial biofilm eradication agents: a current review. Front Chem. 2019;7:824.
Article CAS PubMed PubMed Central Google Scholar
Jangra V, Sharma N, Chhillar AK. Therapeutic approaches for combating Pseudomonas aeruginosa infections. Microbes Infect. 2022;24:104950.
Article CAS PubMed Google Scholar
Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol. 2016;306:48–58.
Article CAS PubMed Google Scholar
Schnappinger D. Genetic approaches to facilitate antibacterial drug development. Cold Spring Harb Perspect Med. 2015;5:a021139.
Article PubMed PubMed Central Google Scholar
Matano LM, Morris HG, Wood BM, Meredith TC, Walker S. Accelerating the discovery of antibacterial compounds using pathway-directed whole cell screening. Bioorg Med Chem. 2016;24:6307–14.
Article CAS PubMed PubMed Central Google Scholar
Brotz-Oesterhelt H, Sass P. Postgenomic strategies in antibacterial drug discovery. Future Microbiol. 2010;5:1553–79.
Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10:507–19.
Article CAS PubMed Google Scholar
Lechartier B, Rybniker J, Zumla A, Cole ST. Tuberculosis drug discovery in the post-post-genomic era. EMBO Mol Med. 2014;6:158–68.
Article CAS PubMed PubMed Central Google Scholar
Miethke M, Pieroni M, Weber T, Bronstrup M, Hammann P, Halby L, et al. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem. 2021;5:726–49.
Article CAS PubMed PubMed Central Google Scholar
Boyd NK, Teng C, Frei CR. Brief overview of approaches and challenges in new antibiotic development: a focus on drug repurposing. Front Cell Infect Microbiol. 2021;11:684515.
Article CAS PubMed PubMed Central Google Scholar
Zhao X, Lam JS. WaaP of Pseudomonas aeruginosa is a novel eukaryotic type protein-tyrosine kinase as well as a sugar kinase essential for the biosynthesis of core lipopolysaccharide. J Biol Chem. 2002;277:4722–30.
Article CAS PubMed Google Scholar
Sarkar B, Mahapa A, Dey K, Manhas R, Chatterji D, Jayaraman N. Aza-Michael promoted glycoconjugation of PETIM dendrimers and selectivity in mycobacterial growth inhibitions. RSC Adv. 2023;13:4669–77.
Article CAS PubMed PubMed Central Google Scholar
Nadri MH, Salim Y, Basar N, Yahya A, Zulkifli RM. Antioxidant activities and tyrosinase inhibition effects of Phaleria macrocarpa extracts. Afr J Tradit Complement Alter Med. 2014;11:107–11.
Clinical, Institute LS. Performance standards for antimicrobial susceptibility testing. Wayne, PA: Clinical and Laboratory Standards Institute; 2017. p. 106–12.
Mahapa A, Samanta GC, Maiti K, Chatterji D, Jayaraman N. Mannopyranoside glycolipids inhibit mycobacterial and biofilm growth and potentiate isoniazid inhibition activities in M. smegmatis. ChemBioChem. 2019;20:1966–76.
Article CAS PubMed Google Scholar
Lambert RJ, Pearson J. Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J Appl Microbiol. 2000;88:784–90.
Article CAS PubMed Google Scholar
Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237–45.
Standards NCfCL, Barry AL. Methods for determining bactericidal activity of antimicrobial agents: approved guideline. Wayne, PA: National Committee for Clinical Laboratory Standards; 1999.
Maiti K, Syal K, Chatterji D, Jayaraman N. Synthetic arabinomannan heptasaccharide glycolipids inhibit biofilm growth and augment isoniazid effects in mycobacterium smegmatis. ChemBioChem. 2017;18:1959–70.
Article CAS PubMed Google Scholar
Caiazza NC, Shanks RM, O’toole G. Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol. 2005;187:7351–61.
Comments (0)