Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, et al. Projected number of people with Parkinson disease in the most populous nations. Neurology. 2007;68:384–6.
Article CAS PubMed Google Scholar
Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912.
Article CAS PubMed Google Scholar
Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci. 1973;20:415–55.
Article CAS PubMed Google Scholar
Dickson DW, Braak H, Duda JE, Duyckaerts C, Gasser T, Halliday GM, et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol. 2009;8:1150–7.
Article CAS PubMed Google Scholar
Kalia LV, Kalia SK, McLean PJ, Lozano AM, Lang AE. α-Synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol. 2013;73:155–69.
Article CAS PubMed Google Scholar
Brocks DR. Anticholinergic drugs used in Parkinson’s disease: an overlooked class of drugs from a pharmacokinetic perspective. J Pharm Pharm Sci. 1999;2:39–46.
Fox SH, Katzenschlager R, Lim SY, Ravina B, Seppi K, Coelho M, et al. The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2011;26(Suppl 3):S2–41.
Connolly B, Lang AE. Pharmacological treatment of Parkinson’s disease: a review. JAMA. 2014;311:1670–83.
Haddad F, Sawalha M, Khawaja Y, Najjar A, Karaman R. Dopamine and levodopa prodrugs for the treatment of Parkinson’s disease. Molecules. 2017;23:40–56.
Article PubMed PubMed Central Google Scholar
Prakash J, Chouhan S, Yadav SK, Westfall S, Rai SN, Singh SP. Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem Res. 2014;39:2527–36.
Article CAS PubMed Google Scholar
Rai SN, Yadav SK, Singh D, Singh SP. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced parkinsonian mouse model. J Chem Neuroanat. 2016;71:41–9.
Article CAS PubMed Google Scholar
Yadav SK, Rai SN, Singh SP. Mucuna pruriens reduces inducible nitric oxide synthase expression in parkinsonian mice model. J Chem Neuroanat. 2017;80:1–10.
Article CAS PubMed ADS Google Scholar
Tang X, Yu D, Wang H, Lei Z, Zhai Y, Sun M, et al. Synaptotagmin 1-mediated cell membrane penetration and dopamine release enhancement by latroeggtoxin-VI. Int J Biol Macromol. 2022;216:906–15.
Article CAS PubMed Google Scholar
Tang X, Yu D, Wang H, Meng W, Lei Z, Zhai Y, et al. Biochemical and cytotoxic evaluation of latroeggtoxin-VI against PC12 cells. J Biochem Mol Toxicol. 2021;35:e22825.
Article CAS PubMed Google Scholar
Wang H, Zhai Y, Lei Z, Chen S, Sun M, Yin P, et al. Latroeggtoxin-VI protects nerve cells and prevents depression by inhibiting NF-κB signaling pathway activation and excessive inflammation. Front Immunol. 2023;14:1171351.
Article CAS PubMed PubMed Central Google Scholar
Salvatore MF. ser31 tyrosine hydroxylase phosphorylation parallels differences in dopamine recovery in nigrostriatal pathway following 6-OHDA lesion. J Neurochem. 2014;129:548–58.
Article CAS PubMed PubMed Central Google Scholar
Morgan RG, Pearn L, Liddiard K, Pumford SL, Burnett AK, Tonks A, et al. γ-Catenin is overexpressed in acute myeloid leukemia and promotes the stabilization and nuclear localization of β-catenin. Leukemia. 2013;27:336–43.
Article CAS PubMed Google Scholar
Maeda O, Usami N, Kondo M, Takahashi M, Goto H, Shimokata K, et al. Plakoglobin (gamma-catenin) has TCF/LEF family-dependent transcriptional activity in beta-catenin-deficient cell line. Oncogene. 2004;23:964–72.
Article CAS PubMed Google Scholar
Jin H, Romano G, Marshall C, Donaldson AE, Suon S, Iacovitti L. Tyrosine hydroxylase gene regulation in human neuronal progenitor cells does not depend on Nurr1 as in the murine and rat systems. J Cell Physiol. 2006;207:49–57.
Article CAS PubMed PubMed Central Google Scholar
Dorszewska J, Prendecki M, Oczkowska A, Rozycka A, Lianeri M, Kozubski W. Polymorphism of the COMT, MAO, DAT, NET and 5-HTT genes, and biogenic amines in Parkinson’s disease. Curr Genomics. 2013;14:518–33.
Article CAS PubMed PubMed Central Google Scholar
Greene LA, Rein G. Short-term regulation of catecholamine biosynthesis in a nerve growth factor responsive clonal line of rat pheochromocytoma cells. J Neurochem. 1978;30:549–55.
Article CAS PubMed Google Scholar
Amara SG, Sonders MS, Zahniser NR, Povlock SL, Daniels GM. Molecular physiology and regulation of catecholamine transporters. Adv Pharmacol. 1998;42:164–8.
Article CAS PubMed Google Scholar
Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S. Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem. 2000;74:721–9.
Article CAS PubMed Google Scholar
Mehraein F, Talebi R, Jameie B, Joghataie MT, Madjd Z. Neuroprotective effect of exogenous melatonin on dopaminergic neurons of the substantia nigra in ovariectomized rats. Iran Biomed J. 2011;15:44–50.
CAS PubMed PubMed Central Google Scholar
Smith SW. Reticular and areticular nissl bodies in sympathetic neurons of a lizard. J Biophys Biochem Cytol. 1959;6:77–84.
Article CAS PubMed PubMed Central Google Scholar
Greene LA, Tischler AS. Establishment of a noradrenergicclonal line of rat adrenal pheochromocytoma cells which respond to nervegrowth factor.Proc. Natl. Acad. Sci. 1976; 73:2424–2428.
Rebois RV, Reynolds EE, Toll L, Howard BD. Storage of dopamine and acetylcholine in granules of PC12, a clonal pheochromocytoma cell line. Biochemistry. 1980;19:1240–8.
Article CAS PubMed Google Scholar
Das PC, McElroy WK, Cooper RL. Differential modulation of catecholamines by chlorotriazine herbicides in pheochromocytoma (PC12) cells in vitro. Toxicol Sci. 2000;56:324–31.
Article CAS PubMed Google Scholar
Westerink RH, Ewing AG. The PC12 cell as model for neurosecretion. Acta Physiol. 2008;192:273–85.
Prinholato SC, Costa T, Paiva RM, Cintra AC, Menaldo DL, Antunes LM, et al. Antitumor potential of the myotoxin BthTX-I from Bothrops jararacussu snake venom: evaluation of cell cycle alterations and death mechanisms induced in tumor cell lines. J Venom Anim Toxins Incl Trop Dis. 2015;21:44–51.
Annabi E, Ben SI, Abid ES. Acetamiprid, a neonicotinoid insecticide, induced cytotoxicity and genotoxicity in PC12 cells. Toxicol Mech Methods. 2019;29:580–6.
Article CAS PubMed Google Scholar
Sivakumar P, Nagashanmugam KB, Priyatharshni S, Lavanya R, Prabhu N, Ponnusamy S. Review on the interactions between dopamine metabolites and α-Synuclein in causing Parkinson’s disease. Neurochem Int. 2023;162:105461.
Article CAS PubMed Google Scholar
Popova NK, Gilinskii MA, Amstislavskaya TG. Effect of monoamine oxidase gene knockout on dopamine metabolism in mouse brain structures. Bull Exp Biol Med. 2004;137:382–4.
Article CAS PubMed Google Scholar
Schapira AHV. Monoamine oxidase B inhibitors for the treatment of Parkinson’s disease: a review of symptomatic and potential disease-modifying effects. CNS Drugs. 2011;25:1061–71.
Article CAS PubMed Google Scholar
German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the dopamine and vesicular monoamine transporters: pharmacologicaltargets and implications for disease. Pharmacol Rev. 2015;67:1005–24.
Article CAS PubMed PubMed Central Google Scholar
Omiatek DM, Bressler AJ, Cans A-S, Andrews AM, Heien ML, Ewing AG. The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Sci Rep. 2013;3:1447–52.
Article PubMed PubMed Central Google Scholar
Pothos EN, Larsen KE, Krantz DE, Liu Y, Haycock JW, Setlik W, et al. Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size. J Neurosci. 2000;20:7297–306.
Comments (0)