Komel T, Bosnjak M, Kranjc Brezar S, De Robertis M, Mastrodonato M, Scillitani G, et al. Gene electrotransfer of IL-2 and IL-12 plasmids effectively eradicated murine B16.F10 melanoma. Bioelectrochemistry. 2021;141:107843.
Article CAS PubMed Google Scholar
Shi G, Edelblute C, Arpag S, Lundberg C, Heller R. IL-12 Gene electrotransfer triggers a change in immune response within mouse tumors. Cancers. 2018;10:498.
Article CAS PubMed PubMed Central Google Scholar
Fioretti D, Iurescia S, Fazio VM, Rinaldi M. In vivo DNA electrotransfer for immunotherapy of cancer and neurodegenerative diseases. Curr Drug Metab. 2013;14:279–90.
Article CAS PubMed Google Scholar
Shi G, Scott M, Mangiamele CG, Heller R. Modification of the tumor microenvironment enhances anti-PD-1 immunotherapy in metastatic melanoma. Pharmaceutics. 2022;14:2429.
Article PubMed PubMed Central Google Scholar
Heller LC, Coppola D. Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect. Gene Ther 2002;9:1321–5.
Article CAS PubMed Google Scholar
Bosnjak M, Znidar K, Sales Conniff A, Jesenko T, Markelc B, Semenova N, et al. In vitro and in vivo correlation of skin and cellular responses to nucleic acid delivery. Biomed Pharmacother. 2022;150:113088.
Article CAS PubMed PubMed Central Google Scholar
Znidar K, Bosnjak M, Semenova N, Pakhomova O, Heller L, Cemazar M. Tumor cell death after electrotransfer of plasmid DNA is associated with cytosolic DNA sensor upregulation. Oncotarget. 2018;9:18665–81.
Article PubMed PubMed Central Google Scholar
Znidar K, Bosnjak M, Jesenko T, Heller LC, Cemazar M. Upregulation of DNA sensors in B16.F10 melanoma spheroid cells after electrotransfer of pDNA. Technol Cancer Res Treat. 2018;17:1533033818780088.
Article CAS PubMed PubMed Central Google Scholar
Seliger B. Basis of PD1/PD-L1 Therapies. J Clin Med. 2019;8:2168.
Article PubMed PubMed Central Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
Article CAS PubMed Google Scholar
Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P. Human T cell responses against melanoma. Annu Rev Immunol. 2006;24:175–208.
Article CAS PubMed Google Scholar
Novellino L, Castelli C, Parmiani G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother. 2005;54:187–207.
Article CAS PubMed Google Scholar
Rosenberg SA. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity. 1999;10:281–7.
Article CAS PubMed Google Scholar
Chew GL, Campbell AE, De Neef E, Sutliff NA, Shadle SC, Tapscott SJ, et al. DUX4 suppresses MHC class I to promote cancer immune evasion and resistance to checkpoint blockade. Dev Cell. 2019;50:658–71.e657.
Article CAS PubMed PubMed Central Google Scholar
Garrido C, Paco L, Romero I, Berruguilla E, Stefansky J, Collado A, et al. MHC class I molecules act as tumor suppressor genes regulating the cell cycle gene expression, invasion and intrinsic tumorigenicity of melanoma cells. Carcinogenesis. 2012;33:687–93.
Article CAS PubMed Google Scholar
Andersson E, Villabona L, Bergfeldt K, Carlson JW, Ferrone S, Kiessling R, et al. Correlation of HLA-A02* genotype and HLA class I antigen down-regulation with the prognosis of epithelial ovarian cancer. Cancer Immunol Immunother. 2012;61:1243–53.
Article CAS PubMed PubMed Central Google Scholar
Inoue M, Mimura K, Izawa S, Shiraishi K, Inoue A, Shiba S, et al. Expression of MHC Class I on breast cancer cells correlates inversely with HER2 expression. Oncoimmunology. 2012;1:1104–10.
Article PubMed PubMed Central Google Scholar
Noblejas-López MDM, Nieto-Jiménez C, Morcillo García S, Pérez-Peña J, Nuncia-Cantarero M, Andrés-Pretel F, et al. Expression of MHC class I, HLA-A and HLA-B identifies immune-activated breast tumors with favorable outcome. Oncoimmunology. 2019;8:e1629780.
Article PubMed PubMed Central Google Scholar
van Houdt IS, Sluijter BJ, Moesbergen LM, Vos WM, de Gruijl TD, Molenkamp BG, et al. Favorable outcome in clinically stage II melanoma patients is associated with the presence of activated tumor infiltrating T-lymphocytes and preserved MHC class I antigen expression. Int J Cancer. 2008;123:609–15.
Leapman MS, Presley CJ, Zhu W, Soulos PR, Adelson KB, Miksad RA, et al. Association of programmed cell death ligand 1 expression status with receipt of immune checkpoint inhibitors in patients with advanced non-small cell lung cancer. JAMA Netw Open. 2020;3:e207205.
Article PubMed PubMed Central Google Scholar
Sun JY, Zhang D, Wu S, Xu M, Zhou X, Lu XJ, et al. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives, Biomarker. Research. 2020;8:35.
Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17:e542–51.
Article CAS PubMed PubMed Central Google Scholar
Möller K, Fraune C, Blessin NC, Lennartz M, Kluth M, Hube-Magg C, et al. Tumor cell PD-L1 expression is a strong predictor of unfavorable prognosis in immune checkpoint therapy-naive clear cell renal cell cancer. Int Urol Nephrol. 2021;53:2493–503.
Article PubMed PubMed Central Google Scholar
Saito H, Kono Y, Murakami Y, Shishido Y, Kuroda H, Matsunaga T, et al. Highly activated PD-1/PD-L1 pathway in gastric cancer with PD-L1 expression. Anticancer Res. 2018;38:107–12.
Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN, et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med. 2017;214:895–904.
Article CAS PubMed PubMed Central Google Scholar
Yu W, Hua Y, Qiu H, Hao J, Zou K, Li Z, et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020;11:506.
Article CAS PubMed PubMed Central Google Scholar
Kelany M, Barth TF, Salem D, Shakweer MM. Prevalence and prognostic implications of PD-L1 expression in soft tissue sarcomas. Pathol Oncol Res. 2021;27:1609804.
Article PubMed PubMed Central Google Scholar
Ishii H, Azuma K, Kawahara A, Yamada K, Imamura Y, Tokito T, et al. Significance of programmed cell death-ligand 1 expression and its association with survival in patients with small cell lung cancer. J Thorac Oncol. 2015;10:426–30.
Article CAS PubMed Google Scholar
Deng C, Li Z, Guo S, Chen P, Chen X, Zhou Q, et al. Tumor PD-L1 expression is correlated with increased TILs and poor prognosis in penile squamous cell carcinoma. Oncoimmunology. 2017;6:e1269047.
Wells DJ. Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther. 2004;11:1363–9.
Article CAS PubMed Google Scholar
Gonçalves GAR, Paiva RMA. Gene therapy: advances, challenges and perspectives. Einstein. 2017;15:369–75.
Article PubMed PubMed Central Google Scholar
Pradeu T, Cooper EL. The danger theory: 20 years later. Front Immunol. 2012;3:287.
Article PubMed PubMed Central Google Scholar
Brown BD, Lillicrap D. Dangerous liaisons: the role of “danger” signals in the immune response to gene therapy. Blood. 2002;100:1133–40.
Article CAS PubMed Google Scholar
Früh K, Yang Y. Antigen presentation by MHC class I and its regulation by interferon gamma. Curr Opin Immunol. 1999;11:76–81.
Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19:1189–201.
Article CAS PubMed PubMed Central Google Scholar
Chen J, Feng Y, Lu L, Wang H, Dai L, Li Y, Zhang P. Interferon-γ-induced PD-L1 surface expression on human oral squamous carcinoma via PKD2 signal pathway. Immunobiology. 2012;217:385–93.
Comments (0)