Preparation of a Novel Green Fluorescent Carbon Quantum Dots and Application in Fe3+-Specific Detection in Biological System

Qi H, Teng M, Liu M, Liu S, Li J, Yu H, Teng C, Huang Z, Liu H, Shao Q, Umar A, Ding T, Gao Q, Guo Z. Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. J Colloid Interface Sci. 2019;539:332–41.

Article  CAS  Google Scholar 

Li S, Li Y, Cao J, Zhu J, Fan L, Li X. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal Chem. 2014;86(20):10201–7.

Article  CAS  Google Scholar 

Morales M, Xue X. Targeting iron metabolism in cancer therapy. Theranostics. 2021;11(17):8412–29.

Article  CAS  PubMed Central  Google Scholar 

Muñoz M, Acheson AG, Auerbach M, Besser M, Habler O, Kehlet H, Liumbruno GM, Lasocki S, Meybohm P, Rao Baikady R, Richards T, Shander A, So-Osman C, Spahn DR, Klein AA. International consensus statement on the peri-operative management of anaemia and iron deficiency. Anaesthesia. 2017;72(2):233–47.

Article  Google Scholar 

Sahoo SK, Sharma D, Bera RK, Crisponi G, Callan JF. Iron(III) selective molecular and supramolecular fluorescent probes. Chem Soc Rev. 2012;41(21):7195–227.

Article  CAS  Google Scholar 

Coates TD. Physiology and pathophysiology of iron in hemoglobin-associated diseases. Free Radic Biol Med. 2014;72:23–40.

Article  CAS  PubMed Central  Google Scholar 

Dugan C, MacLean B, Cabolis K, Abeysiri S, Khong A, Sajic M, Richards T. The misogyny of iron deficiency. Anaesthesia. 2021;76(Suppl 4):56–62.

Article  Google Scholar 

Powers JM, Buchanan GR. Disorders of iron metabolism: new diagnostic and treatment approaches to iron deficiency. Hematol Oncol Clin N Am. 2019;33(3):393–408.

Article  Google Scholar 

Bloomer SA, Brown KE. Iron-induced liver injury: a critical reappraisal. Int J Mol Sci. 2019;20(9):2132.

Article  CAS  PubMed Central  Google Scholar 

He J, Fang A, Yu S, Shen X, Li K. Dietary nonheme, heme, and total iron intake and the risk of diabetes in adults: results from the china health and nutrition survey. Diabetes Care. 2020;43(4):776–84.

Article  CAS  PubMed Central  Google Scholar 

Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti FM. Iron and cancer. Annu Rev Nutr. 2018;38:97–125.

Article  CAS  Google Scholar 

Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem. 2016;139(Suppl 1):179–97.

Article  CAS  Google Scholar 

Li J, Wang Q, Guo Z, Ma H, Zhang Y, Wang B, Bin D, Wei Q. Highly selective fluorescent chemosensor for detection of Fe3+ based on Fe3O4@ZnO. Sci Rep. 2016;6(1):23558.

Article  CAS  PubMed Central  Google Scholar 

Zhang B, Liu W, Wu X, Zhu J, Hu W, El Jaouhari A, Liu X. Facile preparation of fluorescent carbon dots from glutathione and l-tryptophan for sensitive and selective off/on detection of Fe3+ ions in serum and their bioimaging application. ACS Omega. 2022;7(9):7853–64.

Article  CAS  PubMed Central  Google Scholar 

Zhang Q, Sun Y, Liu M, Liu Y. Selective detection of Fe3+ ions based on fluorescence MXene quantum dots via a mechanism integrating electron transfer and inner filter effect. Nanoscale. 2020;12(3):1826–32.

Article  CAS  Google Scholar 

Wypijewska A, Galazka-Friedman J, Bauminger ER, Wszolek ZK, Schweitzer KJ, Dickson DW, Jaklewicz A, Elbaum D, Friedman A. Iron and reactive oxygen species activity in Parkinsonian substantia nigra. Parkinsonism Relat Disord. 2010;16(5):329–33.

Article  Google Scholar 

Ma ZM, Wu XS, Zheng DD, Wei JY, Xie YN, Shi YB, Huang K, Zhang XM, Liu J. Well-aligned TiO2 nanotube arrays with Ag nanoparticles for highly efficient detection of Fe3+ ion. Nanoscale Res Lett. 2019;14(1):49.

Article  PubMed Central  Google Scholar 

Ninwong B, Ratnarathorn N, Henry CS, Mace CR, Dungchai W. Dual sample preconcentration for simultaneous quantification of metal ions using electrochemical and colorimetric assays. ACS Sens. 2020;5(12):3999–4008.

Article  CAS  Google Scholar 

Sadak O, Sundramoorthy AK, Gunasekaran S. Highly selective colorimetric and electrochemical sensing of iron (III) using nile red functionalized graphene film. Biosens Bioelectron. 2017;89(Pt 1):430–6.

Article  CAS  Google Scholar 

Michalke B. Review about powerful combinations of advanced and hyphenated sample introduction techniques with inductively coupled plasma-mass spectrometry (ICP-MS) for elucidating trace element species in pathologic conditions on a molecular level. Int J Mol Sci. 2022;23(11):6109.

Article  CAS  PubMed Central  Google Scholar 

Kindra LR, Eggers CJ, Liu AT, Mendoza K, Mendoza J, Klein Myers AR, Penner RM. Lithographically patterned PEDOT nanowires for the detection of iron(III) with nanomolar sensitivity. Anal Chem. 2015;87(22):11492–500.

Article  CAS  Google Scholar 

Zhuang Q, Zeng C, Mu Y, Zhang T, Yi G, Wang Y. Lead(II)-triggered aggregation-induced emission enhancement of adenosine-stabilized gold nanoclusters for enhancing photoluminescence detection of nabam—disodium ethylenebis(dithiocarbamate). Chem Eng J. 2023;470: 144113.

Article  CAS  Google Scholar 

Zhang T, Zhuang Q, Wang Y. Copper–carbon dot aerogel: a high-performance mimetic peroxidase and its application for versatile colorimetric bioassays. Chem Commun. 2022;58(93):12955–8.

Article  CAS  Google Scholar 

Zeng C, Mu Y, Cao W, Zhuang Q, Wang Y. Water-soluble photoluminescent adenosine-functionalized gold nanoclusters as highly sensitive and selective receptors for riboflavin detection in rat brain. Anal Chem. 2023;95(2):1671–9.

CAS  Google Scholar 

Tao Z, Yi G, Zeng C, Zhuang Q, Wang Y. Ultrasensitive detection of silver(I) ions based on water-soluble micellized phosphorescent silver nanoclusters co-protected by 1,3-benzenedithiol and triphenylphosphine. Sens Actuat B Chem. 2022;369: 132382.

Article  CAS  Google Scholar 

Mu Y, Zhuang Q, Huang S, Hu M, Wang Y, Ni Y. Adenine-stabilized carbon dots for highly sensitive and selective sensing of copper(II) ions and cell imaging. Spectrochim Acta A Mol Biomol Spectrosc. 2020;239: 118531.

Article  CAS  Google Scholar 

Zhuang Q, Cao W, Ni Y, Wang Y. Synthesis-identification integration: one-pot hydrothermal preparation of fluorescent nitrogen-doped carbon nanodots for differentiating nucleobases with the aid of multivariate chemometrics analysis. Talanta. 2018;185:491–8.

Article  CAS  Google Scholar 

Ye Q, Dai T, Shen J, Xu Q, Hu X, Shu Y. Incorporation of fluorescent carbon quantum dots into metal–organic frameworks with peroxidase-mimicking activity for high-performance ratiometric fluorescent biosensing. J Anal Test. 2023;7:16–24.

Article  Google Scholar 

Chen S, Chen C, Wang J, Luo F, Guo L, Qiu B, Lin Z. A bright nitrogen-doped-carbon-dots based fluorescent biosensor for selective detection of copper ions. J Anal Test. 2021;5:84–92.

Article  Google Scholar 

Luo K, Luo W, Liang Z, Li Y, Kang X, Wu Y, Wen Y. Self-doping synthesis of iodine–carbon quantum dots for sensitive detection of Fe(III) and cellular imaging. New J Chem. 2022;46:19283.

Article  CAS  Google Scholar 

Rong M, Wang D, Li Y, Zhang Y, Huang H, Liu R, Deng X. Green-emitting carbon dots as fluorescent probe for nitrite detection. J Anal Test. 2021;5:51–9.

Article  Google Scholar 

Tian YL, Ji YY, Zou X, Chen QM, Zhang SL, Gong ZJ. N, P Co-doped carbon dots as multifunctional fluorescence nano-sensor for sensitive and selective detection of Cr(VI) and ascorbic acid. J Anal Test. 2022;6:335–45.

Article  Google Scholar 

Cai R, Xiao L, Liu M, Du F, Wang Z. Recent advances in functional carbon quantum dots for antitumour. Int J Nanomed. 2021;16:7195–229.

Article  CAS  Google Scholar 

Khan ME, Mohammad A, Yoon T. State-of-the-art developments in carbon quantum dots (CQDs): photo-catalysis, bio-imaging, and bio-sensing applications. Chemosphere. 2022;302: 134815.

Article  CAS  Google Scholar 

Zhang TT, Chen ZH, Shi GY, Zhang M. Eu3+-doped bovine serum albumin-derived carbon dots for ratiometric fluorescent detection of tetracycline. J Anal Test. 2022;6:365–73.

Article  Google Scholar 

Yadav PK, Upadhyay RK, Kumar D, Bano D, Chandra S, Jit S, Hasan SH. Synthesis of green fluorescent carbon quantum dots from the latex of Ficus benghalensis for the detection of tyrosine and fabrication of Schottky barrier diode. New J Chem. 2021;45(28):12549–56.

Article  CAS  Google Scholar 

Zhao L, Wang Y, Zhao X, Deng Y, Xia Y. Facile synthesis of nitrogen-doped carbon quantum dots with chitosan for fluorescent detection of Fe3+. Polymers (Basel). 2019;11(11):1731.

Article  CAS  PubMed Central  Google Scholar 

Nagaraj M, Ramalingam S, Murugan C, Aldawood S, Jin JO, Choi I, Kim M. Detection of Fe3+ ions in aqueous environment using fluorescent carbon quantum dots synthesized from endosperm of Borassus flabellifer. Environ Res. 2022;212(Pt B): 113273.

Article  CAS  Google Scholar 

Ge G, Li L, Chen M, Wu X, Yang Y, Wang D, Zuo S, Zeng Z, Xiong W, Guo C. Green synthesis of nitrogen-doped carbon dots from fresh tea leaves for selective Fe3+ ions detection and cellular imaging. Nanomaterials (Basel). 2022;12(6):986.

Article  CAS  Google Scholar 

Ye S, Zhang M, Guo J, Song J, Zeng P, Qu J, Chen Y, Li H. Facile synthesis of green fluorescent carbon dots and their application to Fe3+ detection in aqueous solutions. Nanomaterials (Basel). 2022;12(9):1487.

Article  CAS  Google Scholar 

Chen M, Zhai J, An Y, Li Y, Zheng Y, Tian H, Shi R, He X, Liu C, Lin X. Solvent-free pyrolysis strategy for the preparation of biomass carbon dots for the selective detection of Fe3+ ions. Front Chem. 2022;10: 940398.

Article  CAS  Google Scholar 

Comments (0)

No login
gif