Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).
Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl Acad. Sci. USA 117, 13596–13602 (2020).
Article CAS PubMed PubMed Central Google Scholar
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
Article CAS PubMed PubMed Central Google Scholar
Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Sánchez‐Bayo, F. & Wyckhuys, K. A. Further evidence for a global decline of the entomofauna. Aust. Entomol. 60, 9–26 (2021).
Gitay, H. et al. Climate change and biological diversity. IPCC-XVIII Doc 4 (f) (14.VIII.2001). Intergovernmental Panel on Climate Change: Geneva, Switzerland. https://www.ipcc.ch/site/assets/uploads/2001/09/doc4f.pdf (2001).
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).
Khoury, M. J. et al. The continuum of translation research in genomic medicine: how can we accelerate the appropriate integration of human genome discoveries into health care and disease prevention? Genet. Med. 9, 665–674 (2007).
Manolio, T. A. et al. Implementing genomic medicine in the clinic: the future is here. Genet. Med. 15, 258–267 (2013).
Article PubMed PubMed Central Google Scholar
Roberts, M. C. et al. Advancing precision public health using human genomics: examples from the field and future research opportunities. Genome Med. 13, 10 (2021).
Giani, A. M., Gallo, G. R., Gianfranceschi, L. & Formenti, G. Long walk to genomics: history and current approaches to genome sequencing and assembly. Comput. Struct. Biotechnol. J. 18, 9–19 (2020).
Article CAS PubMed Google Scholar
Lewin, H. A. et al. The Earth BioGenome Project 2020: starting the clock. Proc. Natl Acad. Sci. USA 119, e2115635118 (2022).
Article CAS PubMed PubMed Central Google Scholar
McMahon, B. J., Teeling, E. C. & Höglund, J. How and why should we implement genomics into conservation? Evol. Appl. 7, 999–1007 (2014).
Article PubMed PubMed Central Google Scholar
Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics 2nd edn (Cambridge Univ. Press, 2010).
Fuentes‐Pardo, A. P. & Ruzzante, D. E. Whole‐genome sequencing approaches for conservation biology: advantages, limitations and practical recommendations. Mol. Ecol. 26, 5369–5406 (2017).
Supple, M. A. & Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. 19, 131 (2018).
Article PubMed PubMed Central Google Scholar
Hohenlohe, P. A., Funk, W. C. & Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62–82 (2021).
Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11, 697–709 (2010).
Article CAS PubMed Google Scholar
Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).
Article CAS PubMed PubMed Central Google Scholar
Taylor, H. R., Dussex, N. & van Heezik, Y. Bridging the conservation genetics gap by identifying barriers to implementation for conservation practitioners. Glob. Ecol. Conserv. 10, 231–242 (2017).
Jarvis, R. M. et al. Navigating spaces between conservation research and practice: are we making progress? Ecol. Solut. Evid. 1, e12028 (2020).
Kadykalo, A. N., Cooke, S. J. & Young, N. Conservation genomics from a practitioner lens: evaluating the research-implementation gap in a managed freshwater fishery. Biol. Conserv. 241, 108350 (2020).
Toomey, A. H., Knight, A. T. & Barlow, J. Navigating the space between research and implementation in conservation. Conserv. Lett. 10, 619–625 (2017).
Hogg, C. J. et al. Threatened species initiative: empowering conservation action using genomic resources. Proc. Natl Acad. Sci. USA 119, e2115643118 (2022).
Article PubMed PubMed Central Google Scholar
Rossetto, M. et al. A conservation genomics workflow to guide practical management actions. Glob. Ecol. Conserv. 26, e01492 (2021).
Kershaw, F. et al. The coalition for conservation genetics: working across organizations to build capacity and achieve change in policy and practice. Conserv. Sci. Pract. 4, e12635 (2022).
Holderegger, R. et al. Conservation genetics: linking science with practice. Mol. Ecol. 28, 3848–3856 (2019).
O’Brien, D. et al. Bringing together approaches to reporting on within species genetic diversity. J. Appl. Ecol. 59, 2227–2233 (2022).
UN Environment Programme. Kunming-Montreal Global Biodiversity Framework — CBD/COP/15/L25. UN Convention on Biological Diversity: Montreal, Canada. https://www.cbd.int/doc/c/e6d3/cd1d/daf663719a03902a9b116c34/cop-15-l-25-en.pdf (2022).
vonHoldt, B. M., Brzeski, K. E., Wilcove, D. S. & Rutledge, L. Y. Redefining the role of admixture and genomics in species conservation. Conserv. Lett. 11, e12371 (2018).
Flanagan, S. P., Forester, B. R., Latch, E. K., Aitken, S. N. & Hoban, S. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol. Appl. 11, 1035–1052 (2018).
Brandies, P., Peel, E., Hogg, C. J. & Belov, K. The value of reference genomes in the conservation of threatened species. Genes 10, 846 (2019).
Article CAS PubMed PubMed Central Google Scholar
Guhlin, J. et al. Species-wide genomics of kākāpō provides transformational tools to accelerate recovery. Nat. Ecol. Evol. 7, 1693–1705 (2023).
Funk, W., Forester, B. R., Converse, S. J., Darst, C. & Morey, S. Improving conservation policy with genomics: a guide to integrating adaptive potential into US Endangered Species Act decisions for conservation practitioners and geneticists. Conserv. Genet. 20, 115–134 (2019).
Matzek, V., Covino, J., Funk, J. L. & Saunders, M. Closing the knowing-doing gap in invasive plant management: accessibility and interdisciplinarity of scientific research. Conserv. Lett. 7, 208–215 (2014).
De León, L. F., Silva, B., Avilés-Rodríguez, K. J. & Buitrago-Rosas, D. Harnessing the omics revolution to address the global biodiversity crisis. Curr. Opin. Biotechnol. 80, 102901 (2023).
Tang, H. Disentangling a polyploid genome. Nat. Plants 3, 688–689 (2017).
Jaron, K. S. et al. Convergent consequences of parthenogenesis on stick insect genomes. Sci. Adv. 8, eabg3842 (2022).
Article CAS PubMed PubMed Central Google Scholar
Liehr, T. in Cytogenomics (ed. Liehr, T.) 1–7 (Academic, 2021).
Fleischmann, A. et al. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann. Bot. 114, 1651–1663 (2014).
Article CAS PubMed PubMed Central Google Scholar
Shao, C. et al. The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights. Cell 186, 1279–94.e19 (2023).
Article CAS PubMed Google Scholar
Peel, E. et al. Best genome sequencing strategies for annotation of complex immune gene families in wildlife. GigaScience 11, giac100 (2022).
Article PubMed PubMed Central Google Scholar
Zhang, G. Bird sequencing project takes off. Nature 522, 34 (2015).
Article CAS PubMed Google Scholar
Teeling, E. C. et al. Bat biology, genomes, and the Bat1K project: to generate chromosome-level genomes for all living bat species. Annu. Rev. Anim. Biosci. 6, 23–46 (2018).
Haussler, D. et al. Genome 10K: a proposal to obtain whole-genome sequence for 10000 vertebrate species. J. Hered. 100, 659–674 (2009).
Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).
Comments (0)