Bottger, E. C. & Crich, D. Aminoglycosides: time for the resurrection of a neglected class of antibacterials? ACS Infect. Dis. 6, 168–172 (2020).
Article CAS PubMed Google Scholar
Ban, Y. H., Song, M. C., Park, J. W. & Yoon, Y. J. Minor components of aminoglycosides: recent advances in their biosynthesis and therapeutic potential. Nat. Prod. Rep. 37, 301–311 (2020).
Article CAS PubMed Google Scholar
Vicens, Q. & Westhof, E. RNA as a drug target: the case of aminoglycosides. ChemBioChem 4, 1018–1023 (2003).
Article CAS PubMed Google Scholar
Serio, A. W., Magalhães, M. L., Blanchard, J. S. & Connolly, L. E. A in Antimicrobial Drug Resistance (eds. Mayers, D. L. et al.) 213–229 (Springer, 2017).
Matt, T. et al. Dissociation of antibacterial activity and aminoglycoside ototoxicity in the 4-monosubstituted 2-deoxystreptamine apramycin. Proc. Natl Acad. Sci. USA 109, 10984–10989 (2012).
Article CAS PubMed PubMed Central Google Scholar
Bassenden, A. V., Rodionov, D., Shi, K. & Berghuis, A. M. Structural analysis of the tobramycin and gentamicin clinical resistome reveals limitations for next-generation aminoglycoside design. ACS Chem. Biol. 11, 1339–1346 (2016).
Article CAS PubMed Google Scholar
Zárate, S. G. et al. Overcoming aminoglycoside enzymatic resistance: design of novel antibiotics and inhibitors. Molecules 23, 284 (2018).
Article PubMed PubMed Central Google Scholar
Pfister, P., Hobbie, S., Vicens, Q., Bottger, E. C. & Westhof, E. The molecular basis for A-site mutations conferring aminoglycoside resistance: relationship between ribosomal susceptibility and X-ray crystal structures. ChemBioChem 4, 1078–1088 (2003).
Article CAS PubMed Google Scholar
Cox, G. et al. Plazomicin retains antibiotic activity against most aminoglycoside modifying enzymes. ACS Infect. Dis. 4, 980–987 (2018).
Article CAS PubMed PubMed Central Google Scholar
Doi, Y., Wachino, J. I. & Arakawa, Y. Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infect. Dis. Clin. North Am. 30, 523–537 (2016).
Article PubMed PubMed Central Google Scholar
Juhas, M. et al. In vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii. J. Antimicrob. Chemother. 74, 944–952 (2019).
Article CAS PubMed PubMed Central Google Scholar
Hu, Y., Liu, L., Zhang, X., Feng, Y. & Zong, Z. In vitro activity of neomycin, streptomycin, paromomycin and apramycin against carbapenem-resistant Enterobacteriaceae clinical strains. Front. Microbiol. 8, 2275 (2017).
Article PubMed PubMed Central Google Scholar
Ishikawa, M. et al. Lower ototoxicity and absence of hidden hearing loss point to gentamicin C1a and apramycin as promising antibiotics for clinical use. Sci. Rep. 9, 2410 (2019).
Article PubMed PubMed Central Google Scholar
Matsushita, T. et al. Design, multigram synthesis, and in vitro and in vivo evaluation of propylamycin: a semisynthetic 4,5-deoxystreptamine class aminoglycoside for the treatment of drug-resistant Enterobacteriaceae and other Gram-negative pathogens. J. Am. Chem. Soc. 141, 5051–5061 (2019).
Article CAS PubMed PubMed Central Google Scholar
Sati, G. C. et al. Modification at the 2′-position of the 4,5-series of 2-deoxystreptamine aminoglycoside antibiotics to resist aminoglycoside modifying enzymes and increase ribosomal target selectivity. ACS Infect. Dis. 5, 1718–1730 (2019).
Article CAS PubMed PubMed Central Google Scholar
Plattner, M., Gysin, M., Haldimann, K., Becker, K. & Hobbie, S. N. Epidemiologic, phenotypic, and structural characterization of aminoglycoside-resistance gene aac(3)-IV. Int. J. Mol. Sci. 21, 6133 (2020).
Article CAS PubMed PubMed Central Google Scholar
Magalhaes, M. L. & Blanchard, J. S. The kinetic mechanism of AAC(3)-IV aminoglycoside acetyltransferase from Escherichia coli. Biochemistry 44, 16275–16283 (2005).
Article CAS PubMed Google Scholar
Fessler, A. T., Kadlec, K. & Schwarz, S. Novel apramycin resistance gene apmA in bovine and porcine methicillin-resistant Staphylococcus aureus ST398 isolates. Antimicrob. Agents Chemother. 55, 373–375 (2011).
Article CAS PubMed Google Scholar
Bordeleau, E. et al. ApmA is a unique aminoglycoside antibiotic acetyltransferase that inactivates apramycin. mBio 12, e02705-20 (2021).
Article PubMed PubMed Central Google Scholar
Quirke, J. C. K. et al. Apralogs: apramycin 5-O-glycosides and ethers with improved antibacterial activity and ribosomal selectivity and reduced susceptibility to the aminoacyltranserferase (3)-IV resistance determinant. J. Am. Chem. Soc. 142, 530–544 (2020).
Article CAS PubMed Google Scholar
Draker, K. A. & Wright, G. D. Molecular mechanism of the enterococcal aminoglycoside 6′-N-acetyltransferase: role of GNAT-conserved residues in the chemistry of antibiotic inactivation. Biochemistry 43, 446–454 (2004).
Article CAS PubMed Google Scholar
Stogios, P. J. et al. Potential for reduction of streptogramin A resistance revealed by structural analysis of acetyltransferase VatA. Antimicrob. Agents Chemother. 58, 7083–7092 (2014).
Article PubMed PubMed Central Google Scholar
Beaman, T. W., Sugantino, M. & Roderick, S. L. Structure of the hexapeptide xenobiotic acetyltransferase from Pseudomonas aeruginosa. Biochemistry 37, 6689–6696 (1998).
Article CAS PubMed Google Scholar
Murray, I. A. & Shaw, W. V. O-Acetyltransferases for chloramphenicol and other natural products. Antimicrob. Agents Chemother. 41, 1–6 (1997).
Article CAS PubMed PubMed Central Google Scholar
Botto, R. E. & Coxon, B. Two-dimensional proton J-resolved NMR spectroscopy of neomycin B. J. Carbohydr. Chem. 3, 545–563 (1984).
Hanessian, S., Takamoto, T., Massé, R. & Patil, G. Aminoglycoside antibiotics: chemical conversion of neomycin B, paromomycin, and lividomycin B into bioactive pseudosaccharides. Can. J. Chem. 56, 1482–1491 (1978).
Eneva, G. I., Spassov, S. L., Haimova, M. A. & Sandström, J. Complete 1H and 13C NMR assignments for apramycin, sisomicin and some N‐ and N, O‐polyacetylated aminoglycosides. Magn. Reson. Chem. 30, 841–846 (1992).
Koshland, D. E. Protein shape and biological control. Sci. Am. 229, 52–67 (1973).
Article CAS PubMed Google Scholar
Radika, K. & Northrop, D. B. Correlation of antibiotic resistance with Vmax/Km ratio of enzymatic modification of aminoglycosides by kanamycin acetyltransferase. Antimicrob. Agents Chemother. 25, 479–482 (1984).
Article CAS PubMed PubMed Central Google Scholar
Ellis, J., Bagshaw, C. R. & Shaw, W. V. Substrate binding to chloramphenicol acetyltransferase: evidence for negative cooperativity from equilibrium and kinetic constants for binary and ternary complexes. Biochemistry 30, 10806–10813 (1991).
Article CAS PubMed Google Scholar
Yoshii, A., Moriyama, H. & Fukuhara, T. The novel kasugamycin 2′-N-acetyltransferase gene aac(2′)-IIa, carried by the IncP island, confers kasugamycin resistance to rice-pathogenic bacteria. Appl. Environ. Microbiol. 78, 5555–5564 (2012).
Article CAS PubMed PubMed Central Google Scholar
Draker, K. A., Northrop, D. B. & Wright, G. D. Kinetic mechanism of the GC N5-related chromosomal aminoglycoside acetyltransferase AAC(6′)-Ii from Enterococcus faecium: evidence of dimer subunit cooperativity. Biochemistry 42, 6565–6574 (2003).
Article CAS PubMed Google Scholar
Boehr, D. D., Jenkins, S. I. & Wright, G. D. The molecular basis of the expansive substrate specificity of the antibiotic resistance enzyme aminoglycoside acetyltransferase-6′-aminoglycoside phosphotransferase-2′. The role of Asp-99 as an active site base important for acetyl transfer. J. Biol. Chem. 278, 12873–12880 (2003).
Article CAS PubMed Google Scholar
Han, Q. et al. Molecular recognition by glycoside pseudo base pairs and triples in an apramycin–RNA complex. Angew. Chem. Int. Ed. Engl. 44, 2694–2700 (2005).
Article CAS PubMed Google Scholar
Golkar, T. et al. Structural basis for plazomicin antibiotic action and resistance. Commun. Biol. 4, 729 (2021).
Article CAS PubMed PubMed Central Google Scholar
Walter, F., Vicens, Q. & Westhof, E. Aminoglycoside–RNA interactions. Curr. Opin. Chem. Biol. 3, 694–704 (1999).
Comments (0)