Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).
Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).
Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).
National Cancer Institute. Prostate: recent trends in U.S. age-adjusted mortality rates, 2000–2019(a). SEER https://seer.cancer.gov/statistics-network/explorer/application.html?site=66&data_type=2&graph_type=2&compareBy=age_range&chk_age_range_1=1&chk_age_range_160=160&chk_age_range_166=166&hdn_sex=2&race=1&advopt_precision=1&advopt_show_ci=on&hdn_view=0&advopt_show_apc=on&advopt_display=2 (2020).
Siegel, D. A., O’Neil, M. E., Richards, T. B., Dowling, N. F. & Weir, H. K. Prostate cancer incidence and survival, by stage and race/ethnicity — United States, 2001–2017. Morb. Mortal. Wkly Rep. 69, 1473–1480 (2020).
Mori, J. O. et al. Novel forms of prostate cancer chemoresistance to successful androgen deprivation therapy demand new approaches: rationale for targeting BET proteins. Prostate 82, 1005–1015 (2022).
Article CAS PubMed Google Scholar
Mori, J. O. et al. Molecular and pathological subtypes related to prostate cancer disparities and disease outcomes in African American and European American patients. Front. Oncol. 12, 928357 (2022).
Article CAS PubMed Central PubMed Google Scholar
Cancer tomorrow. World Health Organization https://gco.iarc.fr/tomorrow (2021).
Coppé, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).
Article PubMed Central PubMed Google Scholar
Fiard, G. et al. Cellular senescence as a possible link between prostate diseases of the ageing male. Nat. Rev. Urol. 18, 597–610 (2021). Overview linking benign prostate hyperplasia and prostate cancer to senescent cells found in the ageing prostate.
Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).
Article CAS PubMed Google Scholar
Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).
Article CAS PubMed Google Scholar
Artandi, S. E. & DePinho, R. A. A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr. Opin. Genet. Dev. 10, 39–46 (2000).
Article CAS PubMed Google Scholar
Huang, W., Hickson, L. T. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).
Article CAS PubMed Central PubMed Google Scholar
Van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).
Article PubMed Central PubMed Google Scholar
Jun, J. I. L. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12, 676–685 (2010).
Article CAS PubMed Central PubMed Google Scholar
Birch, J. & Gil, J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 34, 1565–1576 (2020).
Article CAS PubMed Central PubMed Google Scholar
Myrianthopoulos, V. et al. Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol. Ther. 193, 31–49 (2019).
Article CAS PubMed Google Scholar
Coppé, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008). These findings outline features of genotoxic stress-induced senescence and suggest cell-nonautonomous mechanisms for the development of cancer by altering the tissue microenvironment.
Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001).
Article CAS PubMed Central PubMed Google Scholar
Bavik, C. et al. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 66, 794–802 (2006).
Article CAS PubMed Google Scholar
Begley, L., Monteleon, C., Shah, R. B., Macdonald, J. W. & Macoska, J. A. CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell 4, 291–298 (2005). In vitro studies with stromal fibroblastic cells isolated from patients demonstrate that the ageing prostatic stroma enhances prostate epithelial cell proliferation in a paracrine manner through the CXCL12–CXCR4 signalling axis.
Article CAS PubMed Google Scholar
Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).
Article CAS PubMed Central PubMed Google Scholar
Waaijer, M. E. C. et al. The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell 11, 722–725 (2012).
Article CAS PubMed Google Scholar
Tuttle, C. S. L. et al. Cellular senescence and chronological age in various human tissues: a systematic review and meta-analysis. Aging Cell 19, e13083 (2020).
Article CAS PubMed Google Scholar
Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018). This work describes senescence-phenotype molecular regulators and how the regulators could be used to identify senescent cells in vitro and in vivo.
Article CAS PubMed Google Scholar
Basisty, N. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599 (2020). This describes a proteomics database of senescence inducers and molecules secreted by senescent cells of different cell types.
Article PubMed Central PubMed Google Scholar
Sikora, E., Bielak-Zmijewska, A. & Mosieniak, G. What is and what is not cell senescence. Adv. Biochem. 64, 110–118 (2018).
da Silva, P. F. L. et al. The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell 18, e12848 (2019). Mouse dermal fibroblasts and myofibres in the vicinity of senescent cell xenotransplants displayed an increased senescence phenotype compared with non-senescent cell xenotransplants.
Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).
Article CAS PubMed Google Scholar
Lau, L. & David, G. Pro- and anti-tumorigenic functions of the senescence-associated secretory phenotype. Expert Opin. Ther. Targets 23, 1041–1051 (2019).
Article CAS PubMed Central PubMed Google Scholar
He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).
Article CAS PubMed Central PubMed Google Scholar
Matjusaitis, M., Chin, G., Sarnoski, E. A. & Stolzing, A. Biomarkers to identify and isolate senescent cells. Ageing Res. Rev. 29, 1–12 (2016).
Article CAS PubMed Google Scholar
Kudlova, N., De Sanctis, J. B. & Hajduch, M. Cellular senescence: molecular targets, biomarkers, and senolytic drugs. Int. J. Mol. Sci. 23, 4168 (2022).
Article CAS PubMed Central PubMed Google Scholar
Vermeulen, K., Van Bockstaele, D. R. & Berneman, Z. N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131–149 (2003).
Article CAS PubMed Central PubMed Google Scholar
Beauséjour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).
Article PubMed Central PubMed Google Scholar
Kotake, Y., Yaxue, Z. & Xiong, Y. DDB1-CUL4 and MLL1 mediate oncogene-induced p16INK4a activation. Cancer Res. 69, 1809–1814 (2009).
Article CAS PubMed Central Google Scholar
Stein, G. H., Drullinger, L. F., Soulard, A. & Dulić, V. Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol. Cell. Biol. 19, 2109–2117 (1999).
Comments (0)