Prognostic and therapeutic potential of senescent stromal fibroblasts in prostate cancer

Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

Article  PubMed  Google Scholar 

Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

Article  PubMed  Google Scholar 

Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

Article  PubMed  Google Scholar 

National Cancer Institute. Prostate: recent trends in U.S. age-adjusted mortality rates, 2000–2019(a). SEER https://seer.cancer.gov/statistics-network/explorer/application.html?site=66&data_type=2&graph_type=2&compareBy=age_range&chk_age_range_1=1&chk_age_range_160=160&chk_age_range_166=166&hdn_sex=2&race=1&advopt_precision=1&advopt_show_ci=on&hdn_view=0&advopt_show_apc=on&advopt_display=2 (2020).

Siegel, D. A., O’Neil, M. E., Richards, T. B., Dowling, N. F. & Weir, H. K. Prostate cancer incidence and survival, by stage and race/ethnicity — United States, 2001–2017. Morb. Mortal. Wkly Rep. 69, 1473–1480 (2020).

Article  Google Scholar 

Mori, J. O. et al. Novel forms of prostate cancer chemoresistance to successful androgen deprivation therapy demand new approaches: rationale for targeting BET proteins. Prostate 82, 1005–1015 (2022).

Article  CAS  PubMed  Google Scholar 

Mori, J. O. et al. Molecular and pathological subtypes related to prostate cancer disparities and disease outcomes in African American and European American patients. Front. Oncol. 12, 928357 (2022).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Cancer tomorrow. World Health Organization https://gco.iarc.fr/tomorrow (2021).

Coppé, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

Article  PubMed Central  PubMed  Google Scholar 

Fiard, G. et al. Cellular senescence as a possible link between prostate diseases of the ageing male. Nat. Rev. Urol. 18, 597–610 (2021). Overview linking benign prostate hyperplasia and prostate cancer to senescent cells found in the ageing prostate.

Article  PubMed  Google Scholar 

Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

Article  CAS  PubMed  Google Scholar 

Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

Article  CAS  PubMed  Google Scholar 

Artandi, S. E. & DePinho, R. A. A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr. Opin. Genet. Dev. 10, 39–46 (2000).

Article  CAS  PubMed  Google Scholar 

Huang, W., Hickson, L. T. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

Article  PubMed Central  PubMed  Google Scholar 

Jun, J. I. L. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12, 676–685 (2010).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Birch, J. & Gil, J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 34, 1565–1576 (2020).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Myrianthopoulos, V. et al. Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol. Ther. 193, 31–49 (2019).

Article  CAS  PubMed  Google Scholar 

Coppé, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008). These findings outline features of genotoxic stress-induced senescence and suggest cell-nonautonomous mechanisms for the development of cancer by altering the tissue microenvironment.

Article  PubMed  Google Scholar 

Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bavik, C. et al. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 66, 794–802 (2006).

Article  CAS  PubMed  Google Scholar 

Begley, L., Monteleon, C., Shah, R. B., Macdonald, J. W. & Macoska, J. A. CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell 4, 291–298 (2005). In vitro studies with stromal fibroblastic cells isolated from patients demonstrate that the ageing prostatic stroma enhances prostate epithelial cell proliferation in a paracrine manner through the CXCL12–CXCR4 signalling axis.

Article  CAS  PubMed  Google Scholar 

Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Waaijer, M. E. C. et al. The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell 11, 722–725 (2012).

Article  CAS  PubMed  Google Scholar 

Tuttle, C. S. L. et al. Cellular senescence and chronological age in various human tissues: a systematic review and meta-analysis. Aging Cell 19, e13083 (2020).

Article  CAS  PubMed  Google Scholar 

Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018). This work describes senescence-phenotype molecular regulators and how the regulators could be used to identify senescent cells in vitro and in vivo.

Article  CAS  PubMed  Google Scholar 

Basisty, N. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599 (2020). This describes a proteomics database of senescence inducers and molecules secreted by senescent cells of different cell types.

Article  PubMed Central  PubMed  Google Scholar 

Sikora, E., Bielak-Zmijewska, A. & Mosieniak, G. What is and what is not cell senescence. Adv. Biochem. 64, 110–118 (2018).

Google Scholar 

da Silva, P. F. L. et al. The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell 18, e12848 (2019). Mouse dermal fibroblasts and myofibres in the vicinity of senescent cell xenotransplants displayed an increased senescence phenotype compared with non-senescent cell xenotransplants.

Article  PubMed  Google Scholar 

Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

Article  CAS  PubMed  Google Scholar 

Lau, L. & David, G. Pro- and anti-tumorigenic functions of the senescence-associated secretory phenotype. Expert Opin. Ther. Targets 23, 1041–1051 (2019).

Article  CAS  PubMed Central  PubMed  Google Scholar 

He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Matjusaitis, M., Chin, G., Sarnoski, E. A. & Stolzing, A. Biomarkers to identify and isolate senescent cells. Ageing Res. Rev. 29, 1–12 (2016).

Article  CAS  PubMed  Google Scholar 

Kudlova, N., De Sanctis, J. B. & Hajduch, M. Cellular senescence: molecular targets, biomarkers, and senolytic drugs. Int. J. Mol. Sci. 23, 4168 (2022).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Vermeulen, K., Van Bockstaele, D. R. & Berneman, Z. N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131–149 (2003).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Beauséjour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).

Article  PubMed Central  PubMed  Google Scholar 

Kotake, Y., Yaxue, Z. & Xiong, Y. DDB1-CUL4 and MLL1 mediate oncogene-induced p16INK4a activation. Cancer Res. 69, 1809–1814 (2009).

Article  CAS  PubMed Central  Google Scholar 

Stein, G. H., Drullinger, L. F., Soulard, A. & Dulić, V. Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol. Cell. Biol. 19, 2109–2117 (1999).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Comments (0)

No login
gif