Ahuja, C. S., Nori, S., Tetreault, L., Wilson, J., Kwon, B., Harrop, J., Choi, D., & Fehlings, M. G. (2017). Traumatic spinal cord injury-repair and regeneration. Neurosurgery, 80(3s), S9-s22.
Al Mamun, A., Chauhan, A., Qi, S., Ngwa, C., Xu, Y., Sharmeen, R., Hazen, A. L., Li, J., Aronowski, J. A., McCullough, L. D., & Liu, F. (2020). Microglial IRF5-IRF4 regulatory axis regulates neuroinflammation after cerebral ischemia and impacts stroke outcomes. Proceedings of the National Academy of Sciences of the United States of America, 117(3), 1742–1752.
Article CAS PubMed Google Scholar
Assinck, P., Duncan, G. J., Plemel, J. R., Lee, M. J., Stratton, J. A., Manesh, S. B., Liu, J., Ramer, L. M., Kang, S. H., Bergles, D. E., Biernaskie, J., & Tetzlaff, W. (2017). Myelinogenic plasticity of oligodendrocyte precursor cells following spinal cord contusion injury. Journal of Neuroscience, 37(36), 8635–8654.
Article CAS PubMed Google Scholar
Basso, D. M., Fisher, L. C., Anderson, A. J., Jakeman, L. B., McTigue, D. M., & Popovich, P. G. (2006). Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. Journal of Neurotrauma, 23(5), 635–659.
Beck, K. D., Nguyen, H. X., Galvan, M. D., Salazar, D. L., Woodruff, T. M., & Anderson, A. J. (2010). Quantitative analysis of cellular inflammation after traumatic spinal cord injury: Evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain, 133(Pt 2), 433–447.
Article PubMed PubMed Central Google Scholar
Bellver-Landete, V., Bretheau, F., Mailhot, B., Vallières, N., Lessard, M., Janelle, M. E., Vernoux, N., Tremblay, M., Fuehrmann, T., Shoichet, M. S., & Lacroix, S. (2019). Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nature Communications, 10(1), 518.
Article CAS PubMed PubMed Central Google Scholar
Bradbury, E. J., & Burnside, E. R. (2019). Moving beyond the glial scar for spinal cord repair. Nature Communications, 10(1), 3879.
Article PubMed PubMed Central Google Scholar
Cheng, J., Zhang, R., Xu, Z., Ke, Y., Sun, R., Yang, H., Zhang, X., Zhen, X., & Zheng, L. T. (2021). Early glycolytic reprogramming controls microglial inflammatory activation. Journal of Neuroinflammation, 18(1), 129.
Article CAS PubMed PubMed Central Google Scholar
David, S., & Kroner, A. (2011). Repertoire of microglial and macrophage responses after spinal cord injury. Nature Reviews Neuroscience, 12(7), 388–399.
Article CAS PubMed Google Scholar
Devanney, N. A., Stewart, A. N., & Gensel, J. C. (2020). Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma. Experimental Neurology, 329, Article 113310.
Article CAS PubMed PubMed Central Google Scholar
Dias, D. O., Kalkitsas, J., Kelahmetoglu, Y., Estrada, C. P., Tatarishvili, J., Holl, D., Jansson, L., Banitalebi, S., Amiry-Moghaddam, M., Ernst, A., Huttner, H. B., Kokaia, Z., Lindvall, O., Brundin, L., Frisén, J., & Göritz, C. (2021). Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions. Nature Communications, 12(1), 5501.
Article CAS PubMed PubMed Central Google Scholar
Dietz, V., & Fouad, K. (2014). Restoration of sensorimotor functions after spinal cord injury. Brain, 137(Pt 3), 654–667.
Ding, X., Chen, C., Zhao, H., Dai, B., Ye, L., Song, T., Huang, S., Wang, J., & You, T. (2025). Inhibiting SHP2 reduces glycolysis, promotes microglial M1 polarization, and alleviates secondary inflammation following spinal cord injury in a mouse model. Neural Regeneration Research, 20(3), 858–872.
Article CAS PubMed Google Scholar
DiSabato, D. J., Marion, C. M., Mifflin, K. A., Alfredo, A. N., Rodgers, K. A., Kigerl, K. A., Popovich, P. G., & McTigue, D. M. (2024). System failure: Systemic inflammation following spinal cord injury. European Journal of Immunology, 54(1), Article e2250274.
Fehlings, M. G., Tetreault, L. A., Wilson, J. R., Kwon, B. K., Burns, A. S., Martin, A. R., Hawryluk, G., & Harrop, J. S. (2017). A clinical practice guideline for the management of acute spinal cord injury: Introduction, rationale, and scope. Global Spine Journal, 7(3 Suppl), 84s–94s.
Article PubMed PubMed Central Google Scholar
Gensel, J. C., Nakamura, S., Guan, Z., van Rooijen, N., Ankeny, D. P., & Popovich, P. G. (2009). Macrophages promote axon regeneration with concurrent neurotoxicity. The Journal of Neuroscience, 29(12), 3956–3968.
Article CAS PubMed PubMed Central Google Scholar
Han, D., Yu, Z., Liu, W., Yin, D., Pu, Y., Feng, J., Yuan, Y., Huang, A., Cao, L., & He, C. (2018). Plasma Hemopexin ameliorates murine spinal cord injury by switching microglia from the M1 state to the M2 state. Cell Death & Disease, 9(2), 181.
Hua, T., Kong, E., Zhang, H., Lu, J., Huang, K., Ding, R., Wang, H., Li, J., Han, C., & Yuan, H. (2024). PRMT6 deficiency or inhibition alleviates neuropathic pain by decreasing glycolysis and inflammation in microglia. Brain, Behavior, and Immunity, 118, 101–114.
Article CAS PubMed Google Scholar
Ji, R., Hao, Z., Wang, H., Su, Y., Yang, W., Li, X., Duan, L., Guan, F., & Ma, S. (2024). Fisetin promotes functional recovery after spinal cord injury by inhibiting microglia/macrophage M1 polarization and JAK2/STAT3 signaling pathway. Journal of Agricultural and Food Chemistry, 72(32), 17964–17976.
Article CAS PubMed Google Scholar
Kumar, H., Jo, M. J., Choi, H., Muttigi, M. S., Shon, S., Kim, B. J., Lee, S. H., & Han, I. B. (2018). Matrix metalloproteinase-8 inhibition prevents disruption of blood-spinal cord barrier and attenuates inflammation in rat model of spinal cord injury. Molecular Neurobiology, 55(3), 2577–2590.
Article CAS PubMed Google Scholar
Kwon, B. K., Hillyer, J., & Tetzlaff, W. (2010). Translational research in spinal cord injury: A survey of opinion from the SCI community. Journal of Neurotrauma, 27(1), 21–33.
Li, J., Huang, J., Chen, L., Ren, W., & Cai, W. (2022). Human umbilical cord mesenchymal stem cells contribute to the reconstruction of bladder function after acute spinal cord injury via p38 mitogen-activated protein kinase/nuclear factor-kappa B pathway. Bioengineered, 13(3), 4844–4856.
Article CAS PubMed PubMed Central Google Scholar
Li, J., Huang, L., Yu, L. T., Tao, G., Wang, Z. Y., Hao, W. Z., & Huang, J. Q. (2020). Feruloylated oligosaccharides alleviate central nervous inflammation in mice following spinal cord contusion. Journal of Agricultural and Food Chemistry, 68(52), 15490–15500.
Article CAS PubMed Google Scholar
Liu, J., Li, S. M., Tang, Y. J., Cao, J. L., Hou, W. S., Wang, A. Q., Wang, C., & Jin, C. H. (2024). Jaceosidin induces apoptosis and inhibits migration in AGS gastric cancer cells by regulating ROS-mediated signaling pathways. Redox Report, 29(1), 2313366.
Article PubMed PubMed Central Google Scholar
Liu, Y., Zhou, L., Du, B., Liu, Y., Xing, J., Guo, S., Li, L., & Chen, H. (2021). Protection against doxorubicin-related cardiotoxicity by Jaceosidin involves the Sirt1 signaling pathway. Oxidative Medicine and Cellular Longevity, 2021, 9984330.
Article PubMed PubMed Central Google Scholar
Liu, Z., Yang, Y., He, L., Pang, M., Luo, C., Liu, B., & Rong, L. (2019). High-dose methylprednisolone for acute traumatic spinal cord injury: A meta-analysis. Neurology, 93(9), e841–e850.
Article CAS PubMed Google Scholar
Lourbopoulos, A., Ertürk, A., & Hellal, F. (2015). Microglia in action: How aging and injury can change the brain’s guardians. Frontiers in Cellular Neuroscience, 9, 54.
Article PubMed PubMed Central Google Scholar
Min, S. W., Kim, N. J., Baek, N. I., & Kim, D. H. (2009). Inhibitory effect of eupatilin and jaceosidin isolated from Artemisia princeps on carrageenan-induced inflammation in mice. Journal of Ethnopharmacology, 125(3), 497–500.
Article CAS PubMed Google Scholar
Mothe, A. J., & Tator, C. H. (2012). Advances in stem cell therapy for spinal cord injury. The Journal of Clinical Investigation, 122(11), 3824–3834.
Comments (0)