Al-Owais, M. M., Hettiarachchi, N. T., Dallas, M. L., Scragg, J. L., Lippiat, J. D., Holden, A. V., Steele, D. S., & Peers, C. (2023). Inhibition of the voltage-gated potassium channel Kv1.5 by hydrogen sulfide attenuates remodeling through S-nitrosylation-mediated signaling. Communications Biology, 6(1), 651. https://doi.org/10.1038/s42003-023-05016-5
Article CAS PubMed PubMed Central Google Scholar
Amidfar, M., Woelfer, M., Réus, G. Z., Quevedo, J., Walter, M., & Kim, Y. K. (2019). The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 94, 109668. https://doi.org/10.1016/j.pnpbp.2019.109668
Article CAS PubMed Google Scholar
Azzam, M. A., ElMonier, A. A., Gad, E. S., & Abd-Elmawla, M. A. (2025). Interplay of endoplasmic reticulum stress, inflammation, apoptosis, and oxidative stress in corticosteroid-induced anxiety and depression: Exploring therapeutic potential of hydrogen sulfide and sertraline. ACS Chemical Neuroscience, 16(7), 1361–1376. https://doi.org/10.1021/acschemneuro.5c00057
Article CAS PubMed Google Scholar
Bai, X., Batallé, G., & Pol, O. (2021). The anxiolytic and antidepressant effects of Diallyl Disulfide and GYY4137 in animals with chronic neuropathic pain. Antioxidants (Basel, Switzerland), 10(7), 1074. https://doi.org/10.3390/antiox10071074
Article CAS PubMed Google Scholar
Bai, X., Batallé, G., Martínez-Martel, I., & Pol, O. (2023). Hydrogen sulfide interacting with cannabinoid 2 receptors during sciatic nerve injury-induced neuropathic pain. Antioxidants, 12(6), 1179. https://doi.org/10.3390/antiox12061179
Article CAS PubMed PubMed Central Google Scholar
Bao, P., Gong, Y., Wang, Y., Xu, M., Qian, Z., Ni, X., & Lu, J. (2023). Hydrogen sulfide prevents LPS-Induced depression-like behavior through the suppression of NLRP3 inflammasome and pyroptosis and the improvement of mitochondrial function in the hippocampus of mice. Biology, 12(8), 1092. https://doi.org/10.3390/biology12081092
Article CAS PubMed PubMed Central Google Scholar
Baskin, V., Eroglu, E., Harmanci, N., & Erol, K. (2022). Antinociceptive, anxiolytic, and depression-like effects of hydrogen sulfide, nitric oxide, and carbon monoxide in rats and the role of opioidergic and serotonergic systems in antinociceptive activity. Fundamental and Clinical Pharmacology, 36(4), 674–686. https://doi.org/10.1111/fcp.12763
Article CAS PubMed Google Scholar
Batallé, G., Bai, X., Pouso-Vázquez, E., Roch, G., Rodríguez, L., & Pol, O. (2021). The recovery of cognitive and affective deficiencies linked with chronic osteoarthritis pain and implicated pathways by slow-releasing hydrogen sulfide treatment. Antioxidants (Basel, Switzerland), 10(10), 1632. https://doi.org/10.3390/antiox10101632
Article CAS PubMed Google Scholar
Caliendo, G., Cirino, G., Santagada, V., & Wallace, J. L. (2010). Synthesis and biological effects of hydrogen sulfide (H2S): Development of H2S-releasing drugs as pharmaceuticals. Journal of Medicinal Chemistry, 53(17), 6275–6286. https://doi.org/10.1021/jm901638j
Article CAS PubMed Google Scholar
Chan, N., Willis, A., Kornhauser, N., Ward, M. M., Lee, S. B., Nackos, E., Seo, B. R., Chuang, E., Cigler, T., Moore, A., Donovan, D., Vallee Cobham, M., Fitzpatrick, V., Schneider, S., Wiener, A., Guillaume-Abraham, J., Aljom, E., Zelkowitz, R., Warren, J. D., … Vahdat, L. (2017). Influencing the tumor microenvironment: A phase II study of copper depletion using Tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 23(3), 666–676. https://doi.org/10.1158/1078-0432.CCR-16-1326
Article CAS PubMed Google Scholar
Chen, X., Jhee, K. H., & Kruger, W. D. (2004). Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. The Journal of Biological Chemistry, 279(50), 52082–52086. https://doi.org/10.1074/jbc.C400481200
Article CAS PubMed Google Scholar
Du, L., Chen, L., Luo, B., Chen, Y. J., Zhang, P., Tang, Y. Y., Jiang, J. M., & Zou, W. (2023). Silent information regulator 1 mediates H2S-inhibited chronic restraint stress-induced depressive-like behaviors by regulating hippocampal autophagy. NeuroReport, 34(3), 128–136. https://doi.org/10.1097/WNR.0000000000001870
Article CAS PubMed Google Scholar
Dutta, S. S., Dasgupta, S., Banerjee, A. K., Nath, I., Biswas, U., Bera, N., & Ruram, A. (2024). Exploring the role of serum hydrogen sulphide (H2S) levels in manic depressive psychosis in terms of its association, diagnostic ability, and severity prediction: findings from a tertiary care center in North Bengal. Cureus, 16(3), e56857. https://doi.org/10.7759/cureus.56857
Article PubMed PubMed Central Google Scholar
Gu, B., Li, T., Zhao, H., Yue, R., Luo, Q., Yu, S., Li, T., Zhao, Y., Liu, D., Wang, Z., & Ho, C. S. H. (2025). Age-dependent effects of H2S on post-traumatic stress disorder in adolescent and adult mice. Frontiers in Psychiatry, 16, 1546737. https://doi.org/10.3389/fpsyt.2025.1546737
Article PubMed PubMed Central Google Scholar
Hashimoto, K. (2011). The role of glutamate on the action of antidepressants. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(7), 1558–1568. https://doi.org/10.1016/j.pnpbp.2010.06.013
Article CAS PubMed Google Scholar
He, J., Guo, R., Qiu, P., Su, X., Yan, G., & Feng, J. (2017). Exogenous hydrogen sulfide eliminates spatial memory retrieval impairment and hippocampal CA1 LTD enhancement caused by acute stress via promoting glutamate uptake. Neuroscience, 350, 110–123. https://doi.org/10.1016/j.neuroscience.2017.03.018
Article CAS PubMed Google Scholar
Jain, S. K., Margret, J. J., Parsanathan, R., & Velusamy, T. (2024). Efficacy of l-cysteine in increasing circulatory hydrogen sulfide, nitrite, and 25-hydroxyvitamin D levels in Zucker diabetic fatty rats and in vitro treatment of hydrogen sulfide and nitrite in upregulating vitamin D hydroxylase genes in monocytes. Journal of Dairy Science, 107(12), 10221–10230. https://doi.org/10.3168/jds.2024-25169
Article CAS PubMed Google Scholar
Jiang, W., Tang, Y. Y., Zhu, W. W., Li, C., Zhang, P., Li, R. Q., Chen, Y. J., Zou, W., & Tang, X. Q. (2021). PI3K/AKT pathway mediates the antidepressant- and anxiolytic-like roles of hydrogen sulfide in streptozotocin-induced diabetic rats via promoting hippocampal neurogenesis. Neurotoxicology, 85, 201–208. https://doi.org/10.1016/j.neuro.2021.05.016
Article CAS PubMed Google Scholar
Kang, X., Jiang, L., Lan, F., Tang, Y. Y., Zhang, P., Zou, W., Chen, Y. J., & Tang, X. Q. (2021). Hydrogen sulfide antagonizes sleep deprivation-induced depression- and anxiety-like behaviors by inhibiting neuroinflammation in a hippocampal Sirt1-dependent manner. Brain Research Bulletin, 177, 194–202. https://doi.org/10.1016/j.brainresbull.2021.10.002
Article CAS PubMed Google Scholar
Kimura, H. (2020). Hydrogen sulfide signalling in the CNS - Comparison with NO. British Journal of Pharmacology, 177(22), 5031–5045. https://doi.org/10.1111/bph.15246
Article CAS PubMed PubMed Central Google Scholar
Kimura, H. (2021). Hydrogen sulfide (H2S) and polysulfide (H2Sn) signaling: The first 25 years. Biomolecules, 11(6), 896. https://doi.org/10.3390/biom11060896
Article CAS PubMed PubMed Central Google Scholar
Kolluru, G. K., Shen, X., Bir, S. C., & Kevil, C. G. (2013). Hydrogen sulfide chemical biology: Pathophysiological roles and detection. Nitric Oxide, 35, 5–20. https://doi.org/10.1016/j.niox.2013.07.002
Article CAS PubMed PubMed Central Google Scholar
Ling, Z., Kong, Q., He, Z., Hao, X., Liu, R., Liu, J., Wang, Y., Liu, J., Du, W., & Liu, Y. (2025). Hydrogen sulfide improves depression-like behaviors in CUMS-induced mice by regulating autophagy. Psychoneuroendocrinology, 175, 107418. https://doi.org/10.1016/j.psyneuen.2025.107418
Article CAS PubMed Google Scholar
Liu, F., Tian, Q., Tang, H. L., Cheng, X., Zou, W., & Zhang, P. (2024). Hydrogen sulfide attenuates depression-like behaviours in Parkinson’s disease model rats by improving synaptic plasticity in a hippocampal Warburg effect-dependent manner. Pharmacology, Biochemistry, and Behavior, 234, 173677. https://doi.org/10.1016/j.pbb.2023.173677
Article CAS PubMed Google Scholar
Luo, B., Xie, Y., Kuang, W., Wang, Y., Chen, G., Zhang, Y., & Yuan, M. (2025). Hydrogen sulfide improves poststroke depression-induced inflammation in microglial cells by enhancing endoplasmic reticulum autophagy and inhibiting the cGAS-STING pathway. NeuroReport, 36(6), 314–326. https://doi.org/10.1097/WNR.0000000000002152
Comments (0)