Anilkumar, S., & Wright-Jin, E. (2024). NF-κB as an inducible regulator of inflammation in the central nervous system. Cells, 13(6), 485. https://doi.org/10.3390/cells13060485
Article CAS PubMed PubMed Central Google Scholar
Bai, J., Wang, Y., Zhu, X., & Shi, J. (2019). Eriodictyol inhibits high glucose-induced extracellular matrix accumulation, oxidative stress, and inflammation in human glomerular mesangial cells. Phytotherapy Research, 33(10), 2775–2782. https://doi.org/10.1002/ptr.6463
Article CAS PubMed Google Scholar
Bhargava, S. K., Singh, T. G., Mannan, A., Singh, S., Singh, M., & Gupta, S. (2022). Pharmacological evaluation of Thuja occidentalis for the attenuation of neuropathy via AGEs and TNF-α inhibition in diabetic neuropathic rats. Environmental Science and Pollution Research International, 29(40), 60542–60557. https://doi.org/10.1007/s11356-022-20106-3
Article CAS PubMed Google Scholar
Bucolo, C., Leggio, G. M., Drago, F., & Salomone, S. (2012). Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats. Biochemical Pharmacology, 84(1), 88–92. https://doi.org/10.1016/j.bcp.2012.03.019
Article CAS PubMed Google Scholar
Calcutt, N. A. (2020). Diabetic neuropathy and neuropathic pain: A (con)fusion of pathogenic mechanisms? Pain, 161(Suppl 1), S65–S86. https://doi.org/10.1097/j.pain.0000000000001922
Article PubMed PubMed Central Google Scholar
Cha, P. H., Shin, W., Zahoor, M., Kim, H. Y., Min, doS., & Choi, K. Y. (2014). Hovenia dulcis Thunb extract and its ingredient methyl vanillate activate Wnt/β-catenin pathway and increase bone mass in growing or ovariectomized mice. PLoS ONE, 9(1), e85546. https://doi.org/10.1371/journal.pone.0085546
Article CAS PubMed PubMed Central Google Scholar
Chang, M. C., & Yang, S. (2023). Diabetic peripheral neuropathy essentials: A narrative review. Annals of Palliative Medicine, 12(2), 390–398. https://doi.org/10.21037/apm-22-693
Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M., & Yaksh, T. L. (1994). Quantitative assessment of tactile allodynia in the rat paw. Journal of Neuroscience Methods, 53(1), 55–63. https://doi.org/10.1016/0165-0270(94)90144-9
Article CAS PubMed Google Scholar
Chen, X., Le, Y., Tang, S. Q., He, W. Y., He, J., Wang, Y. H., & Wang, H. B. (2022). Painful diabetic neuropathy is associated with compromised microglial IGF-1 signaling which can be rescued by green tea polyphenol EGCG in mice. Oxidative Medicine and Cellular Longevity, 2022, Article 6773662. https://doi.org/10.1155/2022/6773662
Article CAS PubMed PubMed Central Google Scholar
Claiborne, A. (1985). Catalase Activity. In R. A. Greenwald (Ed.), CRC handbook of methods for oxygen radical research (pp. 283–284). CRC Press.
Cohen, K., Shinkazh, N., Frank, J., Israel, I., & Fellner, C. (2015). Pharmacological treatment of diabetic peripheral neuropathy. P T, 40(6), 372–388.
PubMed PubMed Central Google Scholar
Deng, Z., Hassan, S., Rafiq, M., Li, H., He, Y., Cai, Y., Kang, X., Liu, Z., & Yan, T. (2020). Pharmacological activity of eriodictyol: The major natural polyphenolic flavanone. Evidence-Based Complementary and Alternative Medicine, 2020, Article 6681352. https://doi.org/10.1155/2020/6681352
Article PubMed PubMed Central Google Scholar
Duksal, T., Tiftikcioglu, B. I., Bilgin, S., Kose, S., & Zorlu, Y. (2016). Role of inflammation in sensory neuropathy in prediabetes or diabetes. Acta Neurologica Scandinavica, 133(5), 384–390. https://doi.org/10.1111/ane.12474
Article CAS PubMed Google Scholar
Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6
Article CAS PubMed Google Scholar
Fatani, A. J., Al-Rejaie, S. S., Abuohashish, H. M., Al-Assaf, A., Parmar, M. Y., Ola, M. S., & Ahmed, M. M. (2015). Neuroprotective effects of Gymnema sylvestre on streptozotocin-induced diabetic neuropathy in rats. Experimental and Therapeutic Medicine, 9(5), 1670–1678. https://doi.org/10.3892/etm.2015.2305
Article PubMed PubMed Central Google Scholar
Galiero, R., Caturano, A., Vetrano, E., Beccia, D., Brin, C., Alfano, M., Di Salvo, J., Epifani, R., Piacevole, A., Tagliaferri, G., Rocco, M., Iadicicco, I., Docimo, G., Rinaldi, L., Sardu, C., Salvatore, T., Marfella, R., & Sasso, F. C. (2023). Peripheral neuropathy in diabetes mellitus: Pathogenetic mechanisms and diagnostic options. International Journal of Molecular Sciences, 24(4), Article 3554. https://doi.org/10.3390/ijms24043554
Article CAS PubMed PubMed Central Google Scholar
Ghasemi, A., & Jeddi, S. (2023). Streptozotocin as a tool for induction of rat models of diabetes: A practical guide. EXCLI Journal, 22, 274–294. https://doi.org/10.17179/excli2022-5720
Article PubMed PubMed Central Google Scholar
Guo, S., Xing, N., Xiang, G., Zhang, Y., & Wang, S. (2023). Eriodictyol: A review of its pharmacological activities and molecular mechanisms related to ischemic stroke. Food & Function, 14(4), 1851–1868. https://doi.org/10.1039/d2fo03417d
Hackett, A. R., Strickland, A., & Milbrandt, J. (2020). Disrupting insulin signaling in Schwann cells impairs myelination and induces a sensory neuropathy. Glia, 68(5), 963–978. https://doi.org/10.1002/glia.23755
Hangping, Z., Ling, H., Lijin, J., Wenting, Z., Xiaoxia, L., Qi, Z., Xiaoming, Z., Qingchun, L., Yiming, L., Qian, X., Ji, H., Bin, L., & Shuo, Z. (2020). The preventive effect of IL-1beta antagonist on diabetic peripheral neuropathy. Endocrine, Metabolic & Immune Disorders Drug Targets, 20(5), 753–759. https://doi.org/10.2174/1871530319666191022114139
Hicks, C. W., & Selvin, E. (2019). Epidemiology of peripheral neuropathy and lower extremity disease in diabetes. Current Diabetes Reports, 19(10), 86. https://doi.org/10.1007/s11892-019-1212-8
Article CAS PubMed PubMed Central Google Scholar
Islam, A., Islam, M. S., Rahman, M. K., Uddin, M. N., & Akanda, M. R. (2020). The pharmacological and biological roles of eriodictyol. Archives of Pharmacal Research, 43(6), 582–592. https://doi.org/10.1007/s12272-020-01243-0
Article CAS PubMed Google Scholar
Jang, H. N., & Oh, T. J. (2023). Pharmacological and nonpharmacological treatments for painful diabetic peripheral neuropathy. Diabetes & Metabolism Journal, 47(6), 743–756. https://doi.org/10.4093/dmj.2023.0018
Lin, Q., Li, K., Chen, Y., Xie, J., Wu, C., Cui, C., & Deng, B. (2023). Oxidative stress in diabetic peripheral neuropathy: Pathway and mechanism-based treatment. Molecular Neurobiology, 60(8), 4574–4594. https://doi.org/10.1007/s12035-023-03342-7
Article CAS PubMed Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.
Article CAS PubMed Google Scholar
Lv, P., Yu, J., Xu, X., Lu, T., & Xu, F. (2019). Eriodictyol inhibits high glucose-induced oxidative stress and inflammation in retinal ganglial cells. Journal of Cellular Biochemistry, 120(4), 5644–5651. https://doi.org/10.1002/jcb.27848
Article CAS PubMed Google Scholar
Malik, R., & Singh, B. (2023). Protective role of eriodictyol in STZ induced diabetic nephropathy in experimental rats. European Chemical Bulletin, 12(4), 567–583.
Morgado, C., Terra, P. P., & Tavares, I. (2010). Neuronal hyperactivity at the spinal cord and periaqueductal grey during painful diabetic neuropathy: Effects of gabapentin. European Journal of Pain, 14(7), 693–699. https://doi.org/10.1016/j.ejpain.2009.11.011
Article CAS PubMed Google Scholar
Nie, X., Wei, X., Ma, H., Fan, L., & Chen, W. D. (2021). The complex role of Wnt ligands in type 2 diabetes mellitus and related complications. Journal of Cellular and Molecular Medicine, 25(14), 6479–6495. https://doi.org/10.1111/jcmm.16663
Comments (0)