Baeta-Corral, R., De la Fuente, M., & Giménez-Llort, L. (2023). Sex-dependent worsening of NMDA-induced responses, anxiety, hypercortisolemia, and organometry of early peripheral immunoendocrine impairment in adult 3xTg-AD mice and their long-lasting ontogenic modulation by neonatal handling. Behavioural Brain Research, 438, Article 114189. https://doi.org/10.1016/j.bbr.2022.114189
Article PubMed CAS Google Scholar
Baeta-Corral, R., Johansson, B., & Giménez-Llort, L. (2018). Long-term treatment with low-dose caffeine worsens BPSD-like profile in 3xTg-AD mice model of Alzheimer’s disease and affects mice with normal aging. Frontiers in Pharmacology, 9, 79. https://doi.org/10.3389/fphar.2018.00079
Article PubMed PubMed Central CAS Google Scholar
Barber, A. J., Del Genio, C. L., Swain, A. B., Pizzi, E. M., Watson, S. C., Tapiavala, V. N., et al. (2024). Age, sex and Alzheimer’s disease: A longitudinal study of 3xTg-AD mice reveals sex-specific disease trajectories and inflammatory responses mirrored in postmortem brains from Alzheimer’s patients. Alzheimer’s Research & Therapy, 16(1), 134. https://doi.org/10.1186/s13195-024-01492-x
Belfiore, R., Rodin, A., Ferreira, E., Velazquez, R., Branca, C., Caccamo, A., et al. (2019). Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell, 18(1), Article e12873. https://doi.org/10.1111/acel.12873
Article PubMed CAS Google Scholar
Bloomer, S. A., Moyer, E. D., Brown, K. E., & Kregel, K. C. (2020). Aging results in accumulation of M1 and M2 hepatic macrophages and a differential response to gadolinium chloride. Histochemistry and Cell Biology, 153(1), 37–48. https://doi.org/10.1007/s00418-019-01827-y
Article PubMed CAS Google Scholar
Chiu, A., Dasari, S., Kurtin, P. J., Theis, J. D., Vrana, J. A., Rech, K. L., et al. (2023). Proteomic identification and clinicopathologic characterization of splenic amyloidosis. The American Journal of Surgical Pathology, 47(1), 74–80. https://doi.org/10.1097/PAS.0000000000001948
Davis, J., Xu, F., Deane, R., Romanov, G., Previti, M. L., Zeigler, K., et al. (2004). Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. Journal of Biological Chemistry, 279(19), 20296–20306. https://doi.org/10.1074/jbc.M312946200
Article PubMed CAS Google Scholar
Davis, J., Xu, F., Miao, J., Previti, M. L., Romanov, G., Ziegler, K., et al. (2006). Deficient cerebral clearance of vasculotropic mutant Dutch/Iowa double A beta in human A betaPP transgenic mice. Neurobiology of Aging, 27(7), 946–954. https://doi.org/10.1016/j.neurobiolaging.2005.05.031
Article PubMed CAS Google Scholar
De Plano, L. M., Saitta, A., Oddo, S., & Caccamo, A. (2024). Navigating Alzheimer’s disease mouse models: Age-related pathology and cognitive deficits. Biomolecules, 14(11), 1405. https://doi.org/10.3390/biom14111405
Article PubMed PubMed Central CAS Google Scholar
Fraile-Ramos, J., Reig-Vilallonga, J., & Giménez-Llort, L. (2024). Glomerular hypertrophy and splenic red pulp degeneration concurrent with oxidative stress in 3xTg-AD mice model for Alzheimer’s disease and its exacerbation with sex and social isolation. International Journal of Molecular Sciences, 25(11), 6112. https://doi.org/10.3390/ijms25116112
Article PubMed PubMed Central CAS Google Scholar
Freire-Antunes, L., Ornellas-Garcia, U., Rangel-Ferreira, M. V., Ribeiro-Almeida, M. L., de Sousa, C. H. G., Carvalho, L. J. M., et al. (2023). Increased neutrophil percentage and Neutrophil-T cell ratio precedes clinical onset of experimental cerebral malaria. International Journal of Molecular Sciences, 24(14), 11332. https://doi.org/10.3390/ijms241411332
Article PubMed PubMed Central CAS Google Scholar
Giménez-Llort, L., Arranz, L., Maté, I., & De la Fuente, M. (2008). Gender-specific neuroimmunoendocrine aging in a triple-transgenic 3xTg-AD mouse model for Alzheimer’s disease and its relation with longevity. NeuroImmunoModulation, 15, 331–343. https://doi.org/10.1159/000156475
Article PubMed CAS Google Scholar
Gong, C.-X., Liu, F., & Iqbal, K. (2018). Multifactorial hypothesis and multi-targets for Alzheimer’s disease. Journal of Alzheimer’s Disease, 64(s1), S107–S117. https://doi.org/10.3233/JAD-179921
Griffiths, J., & Grant, S. G. N. (2022). Synapse pathology in Alzheimer’s disease. Seminars in Cell & Developmental Biology, 139, 13–23. https://doi.org/10.1016/j.semcdb.2022.05.028
Guo, R., Xie, X., Ren, Q., & Liew, P. X. (2025). New insights on extramedullary granulopoiesis and neutrophil heterogeneity in the spleen and its importance in disease. Journal of Leukocyte Biology, 117(3), Article qiae220. https://doi.org/10.1093/jleuko/qiae220
Article PubMed CAS Google Scholar
Hernandez-Zimbron, L. F., Luna-Muñoz, J., Mena, R., Vazquez-Ramirez, R., Kubli-Garfias, C., Cribbs, D. H., et al. (2012). Amyloid-β peptide binds to cytochrome c oxidase subunit 1. PLoS ONE, 7(8), Article e42344. https://doi.org/10.1371/journal.pone.0042344
Article PubMed PubMed Central CAS Google Scholar
Iqbal, K., & Grundke-Iqbal, I. (2010). Alzheimer disease, a multifactorial disorder seeking multitherapies. Alzheimer’s & Dementia, 6(5), 420–424. https://doi.org/10.1016/j.jalz.2010.04.006
Kapadia, M., Mian, M. F., Ma, D., Hutton, C. P., Azam, A., Narkaj, K., et al. (2021). Differential effects of chronic immunosuppression on behavioral, epigenetic, and Alzheimer’s disease-associated markers in 3xTg-AD mice. Alzheimer’s Research & Therapy, 13(1), 30. https://doi.org/10.1186/s13195-020-00745-9
Kapadia, M., Mian, M. F., Michalski, B., Azam, A. B., Ma, D., Salwierz, P., et al. (2018). Sex-dependent differences in spontaneous autoimmunity in adult 3xTg-AD mice. Journal of Alzheimer’s Disease, 63, 1191–1205. https://doi.org/10.3233/JAD-170779
Article PubMed CAS Google Scholar
Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology, 13(3), 159–175. https://doi.org/10.1038/nri3399
Article PubMed CAS Google Scholar
Liao, C., Luo, S., Liu, X., Zhang, L., Xie, P., Zhou, W., et al. (2024). Siglec-F+ neutrophils in the spleen induce immunosuppression following acute infection. Theranostics, 14(6), 2589–2604. https://doi.org/10.7150/thno.93812
Article PubMed PubMed Central CAS Google Scholar
Lutshumba, J., Nikolajczyk, B. S., & Bachstetter, A. D. (2021). Dysregulation of systemic immunity in aging and dementia. Frontiers in Cellular Neuroscience, 15, Article 652111. https://doi.org/10.3389/fncel.2021.652111
Article PubMed PubMed Central CAS Google Scholar
Ma, L., Zhang, J., Fujita, Y., Shinno-Hashimoto, H., Shan, J., Wan, X., et al. (2022). Effects of spleen nerve denervation on depression-like phenotype, systemic inflammation, and abnormal composition of gut microbiota in mice after administration of lipopolysaccharide: A role of brain-spleen axis. Journal of Affective Disorders, 317, 156–165. https://doi.org/10.1016/j.jad.2022.08.087
Article PubMed CAS Google Scholar
Magistri, M., Velmeshev, D., Makhmutova, M., Patel, P., Sartor, G. C., Volmar, C. H., et al. (2016). The BET-bromodomain inhibitor JQ1 reduces inflammation and tau phosphorylation at Ser396 in the brain of the 3xTg model of Alzheimer’s disease. Current Alzheimer Research, 13(9), 985–995. https://doi.org/10.2174/1567205013666160427101832
Article PubMed PubMed Central CAS Google Scholar
Manna, J., Dunbar, G. L., & Maiti, P. (2021). Curcugreen treatment prevented splenomegaly and other peripheral organ abnormalities in 3xTg and 5xFAD mouse models of alzheimer’s disease. Antioxidants (Basel), 1(6), 899. https://doi.org/10.3390/antiox10060899
Marchese, M., Cowan, D., Head, E., Ma, D., Karimi, K., Ashthorpe, V., et al. (2014). Autoimmune manifestations in the 3xTg-AD model of Alzheimer’s disease. Journal of Alzheimer’s Disease, 39, 191–210. https://doi.org/10.3233/JAD-131490
Article PubMed CAS Google Scholar
Mastrangelo, M. A., & Bowers, W. J. (2008). Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer’s disease-related pathologies in male triple-transgenic mice. BMC Neuroscience, 9, 81. https://doi.org/10.1186/1471-2202-9-81
Comments (0)