Al-Makki, A., DiPette, D., Whelton, P. K., Murad, M. H., Mustafa, R. A., Acharya, S., Beheiry, H. M., Champagne, B., Connell, K., Cooney, M. T., Ezeigwe, N., Gaziano, T. A., Gidio, A., Lopez-Jaramillo, P., Khan, U. I., Kumarapeli, V., Moran, A. E., Silwimba, M. M., Rayner, B., … Khan, T. (2022). Hypertension pharmacological treatment in adults: A World Health Organization guideline executive summary. Hypertension, 79, 293–301.
Article PubMed CAS Google Scholar
Bettio, L. E. B., Rajendran, L., & Gil-Mohapel, J. (2017). The effects of aging in the hippocampus and cognitive decline. Neuroscience and Biobehavioral Reviews, 79, 66–86.
Cain, D. P. (1998). Testing the NMDA, long-term potentiation, and cholinergic hypotheses of spatial learning. Neuroscience and Biobehavioral Reviews, 22, 181–193.
Article PubMed CAS Google Scholar
Chen, W. J., Chen, H., Li, Z. M., Huang, W. Y., & Wu, J. L. (2024). Acetylcholine muscarinic M1 receptors in the rodent prefrontal cortex modulate cognitive abilities to establish social hierarchy. Neuropsychopharmacology, 49, 974–982.
Article PubMed CAS Google Scholar
Chung, B. Y. T., Bignell, W., Jacklin, D. L., Winters, B. D., & Bailey, C. D. C. (2016). Postsynaptic nicotinic acetylcholine receptors facilitate excitation of developing CA1 pyramidal neurons. Journal of Neurophysiology, 116, 2043–2055.
Article PubMed PubMed Central CAS Google Scholar
Csiszar, A., Tucsek, Z., Toth, P., Sosnowska, D., Gautam, T., Koller, A., Deak, F., Sonntag, W. E., & Ungvari, Z. (2013). Synergistic effects of hypertension and aging on cognitive function and hippocampal expression of genes involved in β-amyloid generation and Alzheimer’s disease. American Journal of Physiology-Heart and Circulatory Physiology, 305, H1120–H1130.
Article PubMed PubMed Central CAS Google Scholar
Davis, J. A., Kenney, J. W., & Gould, T. J. (2007). Hippocampal α4β2 nicotinic acetylcholine receptor involvement in the enhancing effect of acute nicotine on contextual fear conditioning. The Journal of Neuroscience, 27, 10870–10877.
Article PubMed PubMed Central CAS Google Scholar
Du, M., Kou, L., & Li, S. (2016). Water-soluble chitosan regulates vascular remodeling in hypertension via NFATc1. European Heart Journal Supplements, 18, F38.
Elmarakby, A. A., & Sullivan, J. C. (2021). Sex differences in hypertension: Lessons from spontaneously hypertensive rats (SHR). Clinical Science, 135, 1791–1804.
Article PubMed CAS Google Scholar
Esaki, H., Deyama, S., Izumi, S., Katsura, A., Nishikawa, K., Nishitani, N., & Kaneda, K. (2023). Varenicline enhances recognition memory via alpha7 nicotinic acetylcholine receptors in the medial prefrontal cortex in male mice. Neuropharmacology, 239, 109672.
Article PubMed CAS Google Scholar
Foulquier, S., Namsolleck, P., Van Hagen, B. T., Milanova, I., Post, M. J., Blankesteijn, W. M., Rutten, B. P., Prickaerts, J., Van Oostenbrugge, R. J., & Unger, T. (2018). Hypertension-induced cognitive impairment: Insights from prolonged angiotensin II infusion in mice. Hypertension Research, 41, 817–827.
Article PubMed CAS Google Scholar
Gattu, M., Pauly, J. R., Boss, K. L., Summers, J. B., & Buccafusco, J. J. (1997a). Cognitive impairment in spontaneously hypertensive rats: Role of central nicotinic receptors. I. Brain Research, 771, 89–103.
Article PubMed CAS Google Scholar
Gattu, M., Terry, A. J., Pauly, J. R., & Buccafusco, J. J. (1997b). Cognitive impairment in spontaneously hypertensive rats: Role of central nicotinic receptors. Part II. Brain Research, 771, 104–114.
Article PubMed CAS Google Scholar
Griguoli, M., Cellot, G., & Cherubini, E. (2013). In hippocampal oriens interneurons anti-hebbian long-term potentiation requires cholinergic signaling via α7 nicotinic acetylcholine receptors. The Journal of Neuroscience, 33, 1044–1049.
Article PubMed PubMed Central CAS Google Scholar
Hernandez, C. M., Hoifodt, H., & Terry, A. J. (2003). Spontaneously hypertensive rats: Further evaluation of age-related memory performance and cholinergic marker expression. Journal of Psychiatry & Neuroscience, 28, 197–209.
Huang, G.; Cong, Z.; Wang, X.; Yuan, Y.; Xu, R.; Lu, Z.; Wang, X.; Qi, J. 2019. Targeting HSP90 attenuates angiotensin II-induced adventitial remodelling via suppression of mitochondrial fission. Cardiovascular Research.
Kubo, T., Hagiwara, Y., Endo, S., & Fukumori, R. (2002). Activation of hypothalamic angiotensin receptors produces pressor responses via cholinergic inputs to the rostral ventrolateral medulla in normotensive and hypertensive rats. Brain Research, 953, 232–245.
Article PubMed CAS Google Scholar
Lippiello, P., Letchworth, S. R., Gatto, G. J., Traina, V. M., & Bencherif, M. (2006). Ispronicline: A novel α4β2 nicotinic acetylcholine receptor-selective agonist with cognition-enhancing and neuroprotective properties. Journal of Molecular Neuroscience, 30, 19–20.
Article PubMed CAS Google Scholar
Liu, R. Y., Gu, R., Qi, X. L., Zhang, T., Zhao, Y., He, Y., Pei, J. J., & Guan, Z. Z. (2008). Decreased nicotinic receptors and cognitive deficit in rats intracerebroventricularly injected with beta-amyloid peptide(1–42) and fed a high-cholesterol diet. Journal of Neuroscience Research, 86, 183–193.
Article PubMed CAS Google Scholar
Martin, S. J., & Clark, R. E. (2007). The rodent hippocampus and spatial memory: From synapses to systems. Cellular and Molecular Life Sciences, 64, 401–431.
Article PubMed PubMed Central CAS Google Scholar
Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1, 59–65.
Article PubMed CAS Google Scholar
Omer, D. B., Las, L., & Ulanovsky, N. (2023). Contextual and pure time coding for self and other in the hippocampus. Nature Neuroscience, 26, 285–294.
Article PubMed CAS Google Scholar
Ott, T., & Nieder, A. (2019). Dopamine and cognitive control in prefrontal cortex. Trends in Cognitive Sciences, 23, 213–234.
Pacella, J., Lembo, G., & Carnevale, L. (2024). A translational perspective on the interplay between hypertension, inflammation and cognitive impairment. Canadian Journal of Cardiology, 40, 2368–2377.
Picciotto, M. R., Higley, M. J., & Mineur, Y. S. (2012). Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron, 76, 116–129.
Article PubMed PubMed Central CAS Google Scholar
Poea-Guyon, S., Christadoss, P., Le Panse, R., Guyon, T., De Baets, M., Wakkach, A., Bidault, J., Tzartos, S., & Berrih-Aknin, S. (2005). Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. The Journal of Immunology, 1950(174), 5941–5949.
Rodrigue, K. M., Haacke, E. M., & Raz, N. (2011). Differential effects of age and history of hypertension on regional brain volumes and iron. NeuroImage, 54, 750–759.
Sawahata, M., Asano, H., Nagai, T., Ito, N., Kohno, T., Nabeshima, T., Hattori, M., & Yamada, K. (2021). Microinjection of Reelin into the mPFC prevents MK-801-induced recognition memory impairment in mice. Pharmacological Research, 173, Article 105832.
Article PubMed CAS Google Scholar
Shih, Y. H., Tsai, S. F., Huang, S. H., Chiang, Y. T., Hughes, M. W., Wu, S. Y., Lee, C. W., Yang, T. T., & Kuo, Y. M. (2016). Hypertension impairs hippocampus-related adult neurogenesis, CA1 neuron dendritic arborization and long-term memory. Neuroscience, 322, 346–357.
Article PubMed CAS Google Scholar
Taly, A., Corringer, P. J., Guedin, D., Lestage, P., & Changeux, J. P. (2009). Nicotinic receptors: Allosteric transitions and therapeutic targets in the nervous system. Nature Reviews Drug Discovery, 8, 733–750.
Article PubMed CAS Google Scholar
Tayebati, S. K., Di Tullio, M. A., & Amenta, F. (2009). Vesicular acetylcholine transporter (VAChT) in the brain of spontaneously hypertensive rats (SHR): Effect of treatment with an acetylcholinesterase inhibitor. Clinical and Experimental Hypertension, 30, 732–743.
Comments (0)