Integrated 3D Modeling and Functional Simulation of the Human Amygdala: A Novel Anatomical and Computational Analyses

Amunts, K., & Zilles, K. (2015). Architectonic mapping of the human brain beyond Brodmann. Neuron, 88(6), 1086–1107.

Article  CAS  PubMed  Google Scholar 

Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N. J., Habel, U., Schneider, F., & Zilles, K. (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region, and entorhinal cortex: Intersubject variability and probability maps. Anatomy and Embryology, 210(5–6), 343–352.

Article  CAS  PubMed  Google Scholar 

Amunts, K., Mohlberg, H., Bludau, S., & Zilles, K. (2020). Julich-brain: A 3d probabilistic atlas of the human brain’s cytoarchitecture. Science, 369(6506), 988–992.

Article  CAS  PubMed  Google Scholar 

Avecillas-Chasin, J. M., Galbiati, T., Porta, M., & Servello, D. (2024). Deep brain stimulation for Tourette syndrome: Modulation of the limbic-motor interface network. Journal of Neurosurgery, 140(6), 1620–1629.

Article  PubMed  Google Scholar 

Bennett, M. R., Farnell, L., Gibson, W. G., & Lagopoulos, J. (2019). A model of amygdala function following plastic changes at specific synapses during extinction. Neurobiology of Stress, 10, Article 100159.

Article  PubMed  PubMed Central  Google Scholar 

Bielski, K., Adamus, S., Kolada, E., Rączaszek-Leonardi, J., & Szatkowska, I. (2021). Parcellation of the human amygdala using recurrence quantification analysis. Neuroimage, 227, Article 117644.

Article  PubMed  Google Scholar 

Bludau, S., Mühleisen, T. W., Eickhoff, S. B., Hawrylycz, M. J., Cichon, S., & Amunts, K. (2018). The integration of transcriptomic and cytoarchitectonic data implicates a role for MAOA and TAC1 in the limbic-cortical network. Brain Structure and Function, 223(5), 2335–2342.

Article  CAS  PubMed  Google Scholar 

Bzdok, D., Laird, A. R., Zilles, K., Fox, P. T., & Eickhoff, S. B. (2013). An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Human Brain Mapping, 34(12), 3247–3266.

Article  PubMed  Google Scholar 

Cattani, A., Arnold, D. B., McCarthy, M., & Kopell, N. (2024). Basolateral amygdala oscillations enable fear learning in a biophysical model. eLife, 12, Article RP89519.

Article  PubMed  PubMed Central  Google Scholar 

Chen, Chiang, & Storey (2012). Business intelligence and analytics: from big data to big impact. MIS Quarterly 36(4).

Dong, B., Zhou, Q., Gao, P., Wei, J., Xiao, J., Wang, W., Liang, P., Lin, D., Chinese Color Nest, C., He, H., & Zuo X.-N. (2025). AmygdalaGo-BOLT3D: A fast and valid transformer for tracing the boundaries of the amygdala from brain images. bioRxiv: 2024.2008.2011.607487.

Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage, 25(4), 1325–1335.

Article  PubMed  Google Scholar 

Eickhoff, S. B., Heim, S., Zilles, K., & Amunts, K. (2006). Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage, 32(2), 570–582.

Article  PubMed  Google Scholar 

Graebenitz, S., Kedo, O., Speckmann, E. J., Gorji, A., Panneck, H., Hans, V., Palomero-Gallagher, N., Schleicher, A., Zilles, K., & Pape, H. C. (2011). Interictal-like network activity and receptor expression in the human epileptic lateral amygdala. Brain, 134(Pt 10), 2929–2947.

Article  PubMed  Google Scholar 

Kedo, O., Zilles, K., Palomero-Gallagher, N., Schleicher, A., Mohlberg, H., Bludau, S., & Amunts, K. (2018). Receptor-driven multimodal mapping of the human amygdala. Brain Structure and Function, 223(4), 1637–1666.

PubMed  Google Scholar 

Liu, Y., Zhao, G., Nacewicz, B., Adluru, N., Kirk, G., Ferrazzano, P., Styner M., & Alexander A. (2019). Accurate automatic segmentation of amygdala subnuclei and modeling of uncertainty via bayesian fully convolutional neural network.

Marrero, D., Kern, J., & Urrea, C. (2024). Novel robotic controller using neural engineering framework-based spiking neural networks. Sensors (Basel), 24(2), 491.

Article  PubMed  Google Scholar 

McDonald, A. J. (2020). Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits. Handbook of Behavioral Neuroscience, 26, 1–38.

Article  PubMed  PubMed Central  Google Scholar 

Ogut, E. (2025). Mathematical and dynamic modeling of anatomical localization of the insula in the brain. Neuroinformatics, 23(2), 29.

Article  PubMed  PubMed Central  Google Scholar 

Ogut, E., Armagan, K., & Tufekci, D. (2023). The Guillain-Mollaret triangle: A key player in motor coordination and control with implications for neurological disorders. Neurosurgical Review, 46(1), 181.

Article  PubMed  Google Scholar 

Pabba, M. (2013). Evolutionary development of the amygdaloid complex. Frontiers in Neuroanatomy, 7, 27.

Article  PubMed  PubMed Central  Google Scholar 

Palomero-Gallagher, N., Kedo, O., Mohlberg, H., Zilles, K., & Amunts, K. (2020). Multimodal mapping and analysis of the cyto- and receptor architecture of the human hippocampus. Brain Structure and Function, 225(3), 881–907.

Article  CAS  PubMed  Google Scholar 

Pardoe, H. R., Antony, A. R., Hetherington, H., Bagić, A. I., Shepherd, T. M., Friedman, D., Devinsky, O., & Pan, J. (2021). High-resolution automated labeling of the hippocampus and amygdala using a 3D convolutional neural network trained on whole-brain 700 μm isotropic 7T MP2RAGE MRI. Human Brain Mapping, 42(7), 2089–2098.

Article  PubMed  PubMed Central  Google Scholar 

Saygin, Z. M., Osher, D. E., Alahm, A., Fischl, B., & Gabrieli, J. D. (2011). Connectivity-based segmentation of human amygdala nuclei using probabilistic tractography. NeuroImage, 56(3), 1353–1361.

Article  PubMed  Google Scholar 

Schleicher, A., Amunts, K., Geyer, S., Morosan, P., & Zilles, K. (1999). Observer-independent method for microstructural parcellation of cerebral cortex: A quantitative approach to cytoarchitectonics. Neuroimage, 9(1), 165–177.

Article  CAS  PubMed  Google Scholar 

Schleicher, A., Palomero-Gallagher, N., Morosan, P., Eickhoff, S. B., Kowalski, T., Vos, K. D., Amunts, K., & Zilles, K. (2005). Quantitative architectural analysis: A new approach to cortical mapping. Anatomy and Embryology, 210(5–6), 373–386.

Article  CAS  PubMed  Google Scholar 

Seguin, D., Khan, A., & Duerden, E. (2022). Three-dimensional atlas of the human amygdala subnuclei constructed using immunohistochemical and ultrahigh-field magnetic resonance imaging data. 2515: 227-236.

Solano-Castiella, E., Anwander, A., Lohmann, G., Weiss, M., Docherty, C., Geyer, S., Reimer, E., Friederici, A. D., & Turner, R. (2010). Diffusion tensor imaging segments the human amygdala in vivo. Neuroimage, 49(4), 2958–2965.

Article  PubMed  Google Scholar 

Stern, D. B., Wilke, A., & Root, C. M. (2023). Anatomical connectivity of the intercalated cells of the amygdala. eNeuro, 10(10), ENEURO.0238-23.2023. https://doi.org/10.1523/ENEURO.0238-23.2023

Wu, Y., Kundu, S., Stevens, J. S., Fani, N., & Srivastava,. (2022). Elastic shape analysis of brain structures for predictive modeling of PTSD disorder. Front Neuroscience, 16, 954055.

Article  Google Scholar 

Zhao, Z., Yao, S., Li, K., Sindermann, C., Zhou, F., Zhao, W., Li, J., Lührs, M., Goebel, R., Kendrick, K. M., & Becker, B. (2019). Real-time functional connectivity-informed neurofeedback of amygdala-frontal pathways reduces anxiety. Psychotherapy and psychosomatics, 88(1), 5–15. https://doi.org/10.1159/000496057

Article  PubMed  Google Scholar 

Comments (0)

No login
gif