Ballester, M. P., Tranah, T. H., Balcar, L., Fiorillo, A., Ampuero, J., Kerbert, A. J., et al. (2023). Development and validation of the ammon-ohe model to predict risk of overt hepatic encephalopathy occurrence in outpatients with cirrhosis. Journal of Hepatology, 79(4), 967–976. https://doi.org/10.1016/j.jhep.2023.05.022
Crossley, N. A., Mechelli, A., Scott, J., Carletti, F., Fox, P. T., McGuire, P., & Bullmore, E. T. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain, 137(8), 2382–2395. https://doi.org/10.1093/brain/awu132
Article PubMed PubMed Central Google Scholar
Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., et al. (2014). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular psychiatry, 19(6), 659–667.
Du, Y., Fang, S., He, X., & Calhoun, V. D. (2024). A survey of brain functional network extraction methods using fmri data. Trends in Neurosciences, 47(8), 608–621. https://doi.org/10.1016/j.tins.2024.05.011
Article CAS PubMed Google Scholar
Estrada, E., & Rodríguez-Velázquez, J. A. (2005). Subgraph centrality in complex networks. Physical Review E, 71, 056103. https://doi.org/10.1103/PhysRevE.71.056103
Farràs-Permanyer, L., Mancho-Fora, N., Montalà-Flaquer, M., Gudayol-Ferré, E., Gallardo-Moreno, G.B., Zarabozo-Hurtado, D., et al. (2019). Estimation of brain functional connectivity in patients with mild cognitive impairment. Brain Sciences, 9(12). https://doi.org/10.3390/brainsci9120350
Formentin, C., De Rui, M., Zoncapè, M., Ceccato, S., Zarantonello, L., Senzolo, M., et al. (2019). The psychomotor vigilance task: Role in the diagnosis of hepatic encephalopathy and relationship with driving ability. Journal of Hepatology, 70(4), 648–657. https://doi.org/10.1016/j.jhep.2018.12.031
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711.
Article CAS PubMed Google Scholar
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232.
Gallagher, S.R., & Goldberg, D.S. (2013a). Clustering coefficients in protein interaction hypernetworks. Proceedings of the international conference on bioinformatics, computational biology and biomedical informatics (p.552–560). New York, NY, USA: Association for ComputingMachinery.
Gallagher, S.R., & Goldberg, D.S. (2013b). Clustering coefficients in protein interaction hypernetworks. Proceedings of the international conference on bioinformatics, computational biology and biomedical informatics (p.552–560). New York, NY, USA: Association for Computing Machinery.
Gao, Y., Zhang, Z., Lin, H., Zhao, X., Du, S., & Zou, C. (2022). Hypergraph learning: Methods and practices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(5), 2548–2566. https://doi.org/10.1109/TPAMI.2020.3039374
Gu, Z., Jamison, K. W., Sabuncu, M. R., & Kuceyeski, A. (2024). Chapter 9 - machine learning and neuroimaging: Understanding the human brain in health and disease. In K. Kay (Ed.), Computational and network modeling of neuroimaging data (pp. 261–285). Academic Press.
Hsu, T.-W., Wu, C. W., Cheng, Y.-F., Chen, H.-L., Lu, C.-H., Cho, K.-H., et al. (2012). Impaired small-world network efficiency and dynamic functional distribution in patients with cirrhosis. PLOS ONE, 7(5), 1–14. https://doi.org/10.1371/journal.pone.0035266
Huang, S., Li, J., Sun, L., Ye, J., Fleisher, A., Wu, T., et al. (2010). Learning brain connectivity of alzheimer’s disease by sparse inverse covariance estimation. NeuroImage, 50(3), 935–949. https://doi.org/10.1016/j.neuroimage.2009.12.120
Jie, B., Wee, C.-Y., Shen, D., & Zhang, D. (2016). Hyper-connectivity of functional networks for brain disease diagnosis. Medical Image Analysis, 32, 84–100. https://doi.org/10.1016/j.media.2016.03.003
Article PubMed PubMed Central Google Scholar
Nonaka, S., Majima, K., Aoki, S.C., Kamitani, Y. (2021). Brain hierarchy score: Which deep neural networks are hierarchically brain-like? iScience, 24(9), 103013. https://doi.org/10.1016/j.isci.2021.103013
Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87 24, 9868–72. https://api.semanticscholar.org/CorpusID:8183987
Pae, C., Kim, H.-J., Bang, M., Il Park, C., & Lee, S.-H. (2024). Predicting treatment outcomes in patients with panic disorder: Cross-sectional and two-year longitudinal structural connectome analysis using machine learning methods. Journal of Anxiety Disorders, 106, 102895. https://doi.org/10.1016/j.janxdis.2024.102895
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12(null), 2825–2830.
Resende, M.G., & Pardalos, P.M. (2008). Handbook of optimization in telecommunications. Springer Science & Business Media.
Shi, C., Xin, X., Zhang, J. (2021). Domain adaptation using a three-way decision improves the identification of autism patients from multisite fmri data. Brain Sciences, 11(5). https://doi.org/10.3390/brainsci11050603. https://www.mdpi.com/2076-3425/11/5/603
Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., et al. (2011). Network modelling methods for fmri. NeuroImage, 54(2), 875–891. https://doi.org/10.1016/j.neuroimage.2010.08.063
Spera, G., Retico, A., Bosco, P., Ferrari, E., Palumbo, L., Oliva, P., et al. (2019). Evaluation of altered functional connections in male children with autism spectrum disorders on multiple-site data optimized with machine learning. Frontiers in Psychiatry, 10,. https://doi.org/10.3389/fpsyt.2019.00620
Stam, C. J. (2009). From synchronisation to networks: Assessment of functional connectivity in the brain. In J. L. P. Velazquez & R. Wennberg (Eds.), Coordinated activity in the brain: Measurements and relevance to brain function and behavior (pp. 91–115). New York, NY: Springer, New York.
Sun, L., Xue, Y., Zhang, Y., Qiao, L., Zhang, L., & Liu, M. (2021). Estimating sparse functional connectivity networks via hyperparameter-free learning model. Artificial Intelligence in Medicine, 111, 102004. https://doi.org/10.1016/j.artmed.2020.102004
SuWen, L., Kai, W., YongQiang, Y., HaiBao, W., YuanHai, L., & JianMing, X. (2013). Psychometric hepatic encephalopathy score for diagnosis of minimal hepatic encephalopathy in china. World Journal of Gastroenterology: WJG, 19(46), 8745.
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., & Joliot, M. (2002). Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. NeuroImage, 15(1), 273–289. https://doi.org/10.1006/nimg.2001.0978
Article CAS PubMed Google Scholar
van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fmri functional connectivity. European Neuropsychopharmacology, 20(8), 519–534. https://doi.org/10.1016/j.euroneuro.2010.03.008
Article CAS PubMed Google Scholar
Wang, J., Li, H., Qu, G., Cecil, K. M., Dillman, J. R., Parikh, N. A., & He, L. (2023). Dynamic weighted hypergraph convolutional network for brain functional connectome analysis. Medical Image Analysis, 87, 102828. https://doi.org/10.1016/j.media.2023.102828
Article PubMed PubMed Central Google Scholar
Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015). Corrigendum: Gretna: a graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9,. https://doi.org/10.3389/fnhum.2015.00458
Wee, C.-Y., Yap, P.-T., Zhang, D., Wang, L., & Shen, D. (2014). Group-constrained sparse fmri connectivity modeling for mild cognitive impairment identification. Brain Structure and Function, 219, 641–656.
Zhang, D., Tu, L., Zhang, L.-J., Jie, B., & Lu, G.-M. (2018). Subnetwork mining on functional connectivity network for classification of minimal hepatic encephalopathy. Brain imaging and behavior, 12(3), 901–911.
Zhang, G., Cheng, Y., & Liu, B. (2017). Abnormalities of voxel-based whole-brain functional connectivity patterns predict the progression of hepatic encephalopathy. Brain Imaging and Behavior, 11, 784–796.
Zhang, G., Cheng, Y., Shen, W., Liu, B., Huang, L., & Xie, S. (2018). Brain regional homogeneity changes in cirrhotic patients with or without hepatic encephalopathy revealed by multi-frequency bands analysis based on resting-state functional mri. Korean Journal of Radiology, 19(3), 452–462.
Zhang, G., Li, Y., Zhang, X., Huang, L., Cheng, Y., & Shen, W. (2021). Identifying mild hepatic encephalopathy based on multi-layer modular algorithm and machine learning. Frontiers in Neuroscience, 14, 627062.
Zhang, H., Chen, X., Shi, F., Li, G., Kim, M., Giannakopoulos, P... Shen., D. (2016). Topographical information-based high-order functional connectivity and its application in abnormality detection for mild cognitive impairment. Journal of Alzheimer’s disease: JAD, 54(3), 1095–1112. https://doi.org/10.3233/JAD-160092
Zhang, L. J., Zheng, G., Zhang, L., Zhong, J., Li, Q., Zhao, T. Z., et al. (2014). Disrupted small world networks in patients without overt hepatic encephalopathy: A resting state fmri study. European Journal of Radiology, 83(10), 1890–1899. https://doi.org/10.1016/j.ejrad.2014.06.019
Zhang, X. D., & Zhang, L. J. (2018). Multimodal mr imaging in hepatic encephalopathy: state of the art. Metabolic Brain Disease, 33, 661–671.
Zhao, F., Chen, Z., Rekik, I., Lee, S.-W., & Shen, D. (2020). Diagnosis of autism spectrum disorder using central-moment features from low- and high-order dynamic resting-state functional connectivity networks. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00258
Zhao, F., Zhang, H., Rekik, I., An, Z., & Shen, D. (2018). Diagnosis of autism spectrum disorders using multi-level high-order functional networks derived from resting-state functional mri. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00184
Zhao, T., & Zhang, G. (2024). Enhancing major depressive disorder diagnosis with dynamic-static fusion graph neural networks. IEEE Journal of Biomedical and Health Informatics, 28(8), 4701–4710. https://doi.org/10.1109/JBHI.2024.3395611
Comments (0)