Identification of Mild Hepatic Encephalopathy Based on Multi-level Functional Connectivity Hypernetwork

Ballester, M. P., Tranah, T. H., Balcar, L., Fiorillo, A., Ampuero, J., Kerbert, A. J., et al. (2023). Development and validation of the ammon-ohe model to predict risk of overt hepatic encephalopathy occurrence in outpatients with cirrhosis. Journal of Hepatology, 79(4), 967–976. https://doi.org/10.1016/j.jhep.2023.05.022

Crossley, N. A., Mechelli, A., Scott, J., Carletti, F., Fox, P. T., McGuire, P., & Bullmore, E. T. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain, 137(8), 2382–2395. https://doi.org/10.1093/brain/awu132

Article  PubMed  PubMed Central  Google Scholar 

Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., et al. (2014). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular psychiatry, 19(6), 659–667.

Article  PubMed  Google Scholar 

Du, Y., Fang, S., He, X., & Calhoun, V. D. (2024). A survey of brain functional network extraction methods using fmri data. Trends in Neurosciences, 47(8), 608–621. https://doi.org/10.1016/j.tins.2024.05.011

Article  CAS  PubMed  Google Scholar 

Estrada, E., & Rodríguez-Velázquez, J. A. (2005). Subgraph centrality in complex networks. Physical Review E, 71, 056103. https://doi.org/10.1103/PhysRevE.71.056103

Article  CAS  Google Scholar 

Farràs-Permanyer, L., Mancho-Fora, N., Montalà-Flaquer, M., Gudayol-Ferré, E., Gallardo-Moreno, G.B., Zarabozo-Hurtado, D., et al. (2019). Estimation of brain functional connectivity in patients with mild cognitive impairment. Brain Sciences, 9(12). https://doi.org/10.3390/brainsci9120350

Formentin, C., De Rui, M., Zoncapè, M., Ceccato, S., Zarantonello, L., Senzolo, M., et al. (2019). The psychomotor vigilance task: Role in the diagnosis of hepatic encephalopathy and relationship with driving ability. Journal of Hepatology, 70(4), 648–657. https://doi.org/10.1016/j.jhep.2018.12.031

Article  PubMed  Google Scholar 

Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711.

Article  CAS  PubMed  Google Scholar 

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232.

Article  Google Scholar 

Gallagher, S.R., & Goldberg, D.S. (2013a). Clustering coefficients in protein interaction hypernetworks. Proceedings of the international conference on bioinformatics, computational biology and biomedical informatics (p.552–560). New York, NY, USA: Association for ComputingMachinery.

Gallagher, S.R., & Goldberg, D.S. (2013b). Clustering coefficients in protein interaction hypernetworks. Proceedings of the international conference on bioinformatics, computational biology and biomedical informatics (p.552–560). New York, NY, USA: Association for Computing Machinery.

Gao, Y., Zhang, Z., Lin, H., Zhao, X., Du, S., & Zou, C. (2022). Hypergraph learning: Methods and practices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(5), 2548–2566. https://doi.org/10.1109/TPAMI.2020.3039374

Article  PubMed  Google Scholar 

Gu, Z., Jamison, K. W., Sabuncu, M. R., & Kuceyeski, A. (2024). Chapter 9 - machine learning and neuroimaging: Understanding the human brain in health and disease. In K. Kay (Ed.), Computational and network modeling of neuroimaging data (pp. 261–285). Academic Press.

Chapter  Google Scholar 

Hsu, T.-W., Wu, C. W., Cheng, Y.-F., Chen, H.-L., Lu, C.-H., Cho, K.-H., et al. (2012). Impaired small-world network efficiency and dynamic functional distribution in patients with cirrhosis. PLOS ONE, 7(5), 1–14. https://doi.org/10.1371/journal.pone.0035266

Article  CAS  Google Scholar 

Huang, S., Li, J., Sun, L., Ye, J., Fleisher, A., Wu, T., et al. (2010). Learning brain connectivity of alzheimer’s disease by sparse inverse covariance estimation. NeuroImage, 50(3), 935–949. https://doi.org/10.1016/j.neuroimage.2009.12.120

Article  PubMed  Google Scholar 

Jie, B., Wee, C.-Y., Shen, D., & Zhang, D. (2016). Hyper-connectivity of functional networks for brain disease diagnosis. Medical Image Analysis, 32, 84–100. https://doi.org/10.1016/j.media.2016.03.003

Article  PubMed  PubMed Central  Google Scholar 

Nonaka, S., Majima, K., Aoki, S.C., Kamitani, Y. (2021). Brain hierarchy score: Which deep neural networks are hierarchically brain-like? iScience, 24(9), 103013. https://doi.org/10.1016/j.isci.2021.103013

Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87 24, 9868–72. https://api.semanticscholar.org/CorpusID:8183987

Pae, C., Kim, H.-J., Bang, M., Il Park, C., & Lee, S.-H. (2024). Predicting treatment outcomes in patients with panic disorder: Cross-sectional and two-year longitudinal structural connectome analysis using machine learning methods. Journal of Anxiety Disorders, 106, 102895. https://doi.org/10.1016/j.janxdis.2024.102895

Article  PubMed  Google Scholar 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12(null), 2825–2830.

Resende, M.G., & Pardalos, P.M. (2008). Handbook of optimization in telecommunications. Springer Science & Business Media.

Shi, C., Xin, X., Zhang, J. (2021). Domain adaptation using a three-way decision improves the identification of autism patients from multisite fmri data. Brain Sciences, 11(5). https://doi.org/10.3390/brainsci11050603. https://www.mdpi.com/2076-3425/11/5/603

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., et al. (2011). Network modelling methods for fmri. NeuroImage, 54(2), 875–891. https://doi.org/10.1016/j.neuroimage.2010.08.063

Article  PubMed  Google Scholar 

Spera, G., Retico, A., Bosco, P., Ferrari, E., Palumbo, L., Oliva, P., et al. (2019). Evaluation of altered functional connections in male children with autism spectrum disorders on multiple-site data optimized with machine learning. Frontiers in Psychiatry, 10,. https://doi.org/10.3389/fpsyt.2019.00620

Stam, C. J. (2009). From synchronisation to networks: Assessment of functional connectivity in the brain. In J. L. P. Velazquez & R. Wennberg (Eds.), Coordinated activity in the brain: Measurements and relevance to brain function and behavior (pp. 91–115). New York, NY: Springer, New York.

Chapter  Google Scholar 

Sun, L., Xue, Y., Zhang, Y., Qiao, L., Zhang, L., & Liu, M. (2021). Estimating sparse functional connectivity networks via hyperparameter-free learning model. Artificial Intelligence in Medicine, 111, 102004. https://doi.org/10.1016/j.artmed.2020.102004

Article  PubMed  Google Scholar 

SuWen, L., Kai, W., YongQiang, Y., HaiBao, W., YuanHai, L., & JianMing, X. (2013). Psychometric hepatic encephalopathy score for diagnosis of minimal hepatic encephalopathy in china. World Journal of Gastroenterology: WJG, 19(46), 8745.

Article  Google Scholar 

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., & Joliot, M. (2002). Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. NeuroImage, 15(1), 273–289. https://doi.org/10.1006/nimg.2001.0978

Article  CAS  PubMed  Google Scholar 

van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fmri functional connectivity. European Neuropsychopharmacology, 20(8), 519–534. https://doi.org/10.1016/j.euroneuro.2010.03.008

Article  CAS  PubMed  Google Scholar 

Wang, J., Li, H., Qu, G., Cecil, K. M., Dillman, J. R., Parikh, N. A., & He, L. (2023). Dynamic weighted hypergraph convolutional network for brain functional connectome analysis. Medical Image Analysis, 87, 102828. https://doi.org/10.1016/j.media.2023.102828

Article  PubMed  PubMed Central  Google Scholar 

Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015). Corrigendum: Gretna: a graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9,. https://doi.org/10.3389/fnhum.2015.00458

Wee, C.-Y., Yap, P.-T., Zhang, D., Wang, L., & Shen, D. (2014). Group-constrained sparse fmri connectivity modeling for mild cognitive impairment identification. Brain Structure and Function, 219, 641–656.

Article  PubMed  Google Scholar 

Zhang, D., Tu, L., Zhang, L.-J., Jie, B., & Lu, G.-M. (2018). Subnetwork mining on functional connectivity network for classification of minimal hepatic encephalopathy. Brain imaging and behavior, 12(3), 901–911.

Article  PubMed  Google Scholar 

Zhang, G., Cheng, Y., & Liu, B. (2017). Abnormalities of voxel-based whole-brain functional connectivity patterns predict the progression of hepatic encephalopathy. Brain Imaging and Behavior, 11, 784–796.

Article  PubMed  Google Scholar 

Zhang, G., Cheng, Y., Shen, W., Liu, B., Huang, L., & Xie, S. (2018). Brain regional homogeneity changes in cirrhotic patients with or without hepatic encephalopathy revealed by multi-frequency bands analysis based on resting-state functional mri. Korean Journal of Radiology, 19(3), 452–462.

Zhang, G., Li, Y., Zhang, X., Huang, L., Cheng, Y., & Shen, W. (2021). Identifying mild hepatic encephalopathy based on multi-layer modular algorithm and machine learning. Frontiers in Neuroscience, 14, 627062.

Zhang, H., Chen, X., Shi, F., Li, G., Kim, M., Giannakopoulos, P... Shen., D. (2016). Topographical information-based high-order functional connectivity and its application in abnormality detection for mild cognitive impairment. Journal of Alzheimer’s disease: JAD, 54(3), 1095–1112. https://doi.org/10.3233/JAD-160092

Zhang, L. J., Zheng, G., Zhang, L., Zhong, J., Li, Q., Zhao, T. Z., et al. (2014). Disrupted small world networks in patients without overt hepatic encephalopathy: A resting state fmri study. European Journal of Radiology, 83(10), 1890–1899. https://doi.org/10.1016/j.ejrad.2014.06.019

Article  PubMed  Google Scholar 

Zhang, X. D., & Zhang, L. J. (2018). Multimodal mr imaging in hepatic encephalopathy: state of the art. Metabolic Brain Disease, 33, 661–671.

Article  PubMed  Google Scholar 

Zhao, F., Chen, Z., Rekik, I., Lee, S.-W., & Shen, D. (2020). Diagnosis of autism spectrum disorder using central-moment features from low- and high-order dynamic resting-state functional connectivity networks. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00258

Zhao, F., Zhang, H., Rekik, I., An, Z., & Shen, D. (2018). Diagnosis of autism spectrum disorders using multi-level high-order functional networks derived from resting-state functional mri. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00184

Zhao, T., & Zhang, G. (2024). Enhancing major depressive disorder diagnosis with dynamic-static fusion graph neural networks. IEEE Journal of Biomedical and Health Informatics, 28(8), 4701–4710. https://doi.org/10.1109/JBHI.2024.3395611

Article  PubMed  Google Scholar 

Comments (0)

No login
gif