Abraham, A., Milham, M. P., Martino, A. D., et al. (2017). Deriving reproducible biomarkers from Multi-Site Resting-State data: An Autism-Based example. Neuroimage, 147, 736–745.
Almuqhim, F., and Fahad Saeed (2021). ASD-SAENet: A sparse autoencoder, and Deep-Neural network model for detecting autism spectrum disorder (ASD) using fMRI data. Frontiers in Computational Neuroscience, 15(April), 1–10. https://doi.org/10.3389/FNCOM.2021.654315/BIBTEX
Armstrong, R. A. (2014). When to use the B onferroni correction. Ophthalmic and Physiological Optics, 34(5), 502–508.
Beer, J. C., Nicholas, J., Tustison, P. A., Cook, et al. (2020). Longitudinal combat: A method for harmonizing longitudinal Multi-Scanner imaging data. Neuroimage, 220, 117129.
Benavoli, A., Corani, G., Mangili, F., & Zaffalon, M. (2015). A bayesian nonparametric procedure for comparing algorithms. 1264–1272.
Benavoli, A., Corani, G., & Demšar, J., and Marco Zaffalon (2017). Time for a change: A tutorial for comparing multiple classifiers through bayesian analysis. Journal of Machine Learning Research, 18(77), 1–36.
Berahmand, K., Daneshfar, F., Salehi, E. S., & Li, Y., and Yue Xu (2024). Autoencoders and their applications in machine learning: A survey. Artificial Intelligence Review, 57(2), 28. https://doi.org/10.1007/s10462-023-10662-6
Caballero, C., Mistry, S., & Elizabeth, B. T. (2020). Age-Dependent statistical changes of involuntary head motion signatures across autism and controls of the ABIDE repository. Frontiers in Integrative Neuroscience, 14, 23.
Article PubMed PubMed Central Google Scholar
Cabin, R. J., & Randall, J. M. (2000). To bonferroni or not to bonferroni: When and how are the questions. Bulletin of the Ecological Society of America, 81(3), 246–248.
Chen, X., Zhang, H., Zhang, L., Shen, C., Lee, S. W., & Shen, D. (2017). Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Human Brain Mapping, 38(10), 5019–5034. https://doi.org/10.1002/hbm.23711
Article PubMed PubMed Central Google Scholar
Chen, A. A., Joanne, C., Beer, Nicholas, J., Tustison, et al. (2022). Mitigating site effects in covariance for machine learning in neuroimaging data. Human Brain Mapping, 43(4), 1179–1195.
Craddock, R., Cameron, G. A., James, P. E., Holtzheimer, I. I. I., Xiaoping, P., Hu, & Helen, S. M. (2012). A whole brain fMRI atlas generated via spatially constrained spectral clustering. Human Brain Mapping, 33(8), 1914–1928.
Craddock, C., Benhajali, Y., Chu, C., et al. (2013). The neuro bureau preprocessing initiative: Open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics, 7(27), 5.
Dewey, B. E., Can Zhao, J. C., Reinhold, et al. (2019). DeepHarmony: A deep learning approach to contrast harmonization across scanner changes. Magnetic Resonance Imaging, 64, 160–170.
Article PubMed PubMed Central Google Scholar
Di Martino, Adriana, C. G., Li, Y. Q., et al. (2014). The autism brain imaging data exchange: Towards a Large-Scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667.
Dinsdale, N. K., Jenkinson, M., Ana, I. L., & Namburete (2021). Deep Learning-Based unlearning of dataset bias for MRI harmonisation and confound removal. Neuroimage, 228(March), 117689. https://doi.org/10.1016/j.neuroimage.2020.117689
El-Gazzar, Ahmed, R. M., Thomas, & Guido van Wingen (2023). Harmonization techniques for machine learning studies using Multi-Site functional MRI data. BioRxiv, 2023–2006.
Eslami, T., Almuqhim, F., & Raiker, J. S. (2021). and Fahad Saeed. Machine Learning Methods for Diagnosing Autism Spectrum Disorder and Attention- Deficit/Hyperactivity Disorder Using Functional and Structural MRI: A Survey. In Frontiers in Neuroinformatics, vol. 14. Frontiers Media S.A., January. https://doi.org/10.3389/fninf.2020.575999
Fortin, J. P., Sweeney, E. M., Muschelli, J., Ciprian, M., Crainiceanu, R. T., Shinohara, & Alzheimer’s Disease Neuroimaging Initiative. (2016). Removing Inter-Subject technical variability in magnetic resonance imaging studies. Neuroimage, 132, 198–212.
Fortin, J. P., Parker, D., Birkan Tunç, et al. (2017). Harmonization of Multi-Site diffusion tensor imaging data. Neuroimage, 161(November), 149–170. https://doi.org/10.1016/j.neuroimage.2017.08.047
Fortin, J. P., Cullen, N., Sheline, Y. I., et al. (2018). Harmonization of cortical thickness measurements across scanners and sites. Neuroimage, 167(February), 104–120. https://doi.org/10.1016/j.neuroimage.2017.11.024
García, S., Fernández, A., & Luengo, J., and Francisco Herrera (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10), 2044–2064.
Glover, G. H., Bryon, A., Mueller, Jessica, A., Turner, et al. (2012). Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. Journal of Magnetic Resonance Imaging, 36(1), 39–54.
Article PubMed PubMed Central Google Scholar
Goeman, J. J., and Aldo Solari (2014). Multiple hypothesis testing in genomics. Statistics in Medicine, 33(11), 1946–1978.
Haynes, W. (2013). Bonferroni correction. Encyclopedia of Systems Biology, 154–154.
Hollander, M., & Wolfe, D. A., and Eric Chicken (2013). Nonparametric statistical methods. Wiley.
Hu, F., Lucas, A., Chen, A. A., et al. (2024). Deepcombat: A statistically motivated, Hyperparameter-robust, deep learning approach to harmonization of neuroimaging data. Human Brain Mapping, 45(11), e26708.
Article PubMed PubMed Central Google Scholar
Hull, L., Petrides, K. V., Allison, C., et al. (2017). Putting on my best normal’: Social camouflaging in adults with autism spectrum conditions. Journal of Autism and Developmental Disorders, 47, 2519–2534.
Article PubMed PubMed Central Google Scholar
Johnson, W., Evan, C., & Li, and Ariel Rabinovic (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118–127. https://doi.org/10.1093/biostatistics/kxj037
Jovicich, J., Czanner, S., Douglas Greve, et al. (2006). Reliability in Multi-Site structural MRI studies: Effects of gradient Non-Linearity correction on Phantom and human data. Neuroimage, 30(2), 436–443. https://doi.org/10.1016/j.neuroimage.2005.09.046
Komandur, D., Gupta, U., Chattopadhyay, T. (2023). Unsupervised harmonization of brain MRI using 3D cyclegans and its effect on brain age prediction. 1–5.
Marek, S., Tervo-Clemmens, B., Calabro, F. J., et al. (2022). Reproducible Brain-Wide association studies require thousands of individuals. Nature, 603(7902), 654–660. https://doi.org/10.1038/s41586-022-04492-9
Article PubMed PubMed Central CAS Google Scholar
Marzi, C., Giannelli, M., Barucci, A., Tessa, C., & Mascalchi, M., and Stefano Diciotti (2024). Efficacy of MRI data harmonization in the age of machine learning: A multicenter study across 36 datasets. Scientific Data, 11(1), 115.
Article PubMed PubMed Central Google Scholar
Moyer, D., Steeg, G. V., Chantal, M. W., Tax, & Paul, M. T. (2020). Scanner invariant representations for diffusion MRI harmonization. Magnetic Resonance in Medicine, 84(4), 2174–2189.
Article PubMed PubMed Central Google Scholar
Nebel, M., Beth, A., Eloyan, Carrie, A., Nettles, et al. (2016). Intrinsic Visual-Motor synchrony correlates with social deficits in autism. Biological Psychiatry, 79(8), 633–641.
Noble, S., Spann, M. N., Tokoglu, F., Shen, X., & Constable, R. T., and Dustin Scheinost (2017). Influences on the Test–Retest reliability of functional connectivity MRI and its relationship with behavioral utility. Cerebral Cortex, 27(11), 5415–5429.
Article PubMed PubMed Central Google Scholar
Ojala, M., & Gemma, C. G. (2010). Permutation tests for studying classifier performance. Journal of Machine Learning Research 11 (6).
Parekh, P., Bhalerao, G. V., Viswanath, B., et al. (2022). Sample size requirement for achieving multisite harmonization using structural brain MRI features. Neuroimage, 264, 119768.
Pomponio, R., Erus, G., Habes, M., et al. (2020). Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. Neuroimage, 208(March), 116450. https://doi.org/10.1016/j.neuroimage.2019.116450
Serra, G., Mainas, F., Golosio, B., & Retico, A., and Piernicola Oliva (2023). Effect of data harmonization of multicentric dataset in ASD/TD classification. Brain Informatics, 10(1), 32.
Comments (0)