Overcoming Site Variability in Multisite fMRI Studies: an Autoencoder Framework for Enhanced Generalizability of Machine Learning Models

Abraham, A., Milham, M. P., Martino, A. D., et al. (2017). Deriving reproducible biomarkers from Multi-Site Resting-State data: An Autism-Based example. Neuroimage, 147, 736–745.

Article  PubMed  Google Scholar 

Almuqhim, F., and Fahad Saeed (2021). ASD-SAENet: A sparse autoencoder, and Deep-Neural network model for detecting autism spectrum disorder (ASD) using fMRI data. Frontiers in Computational Neuroscience, 15(April), 1–10. https://doi.org/10.3389/FNCOM.2021.654315/BIBTEX

Article  Google Scholar 

Armstrong, R. A. (2014). When to use the B onferroni correction. Ophthalmic and Physiological Optics, 34(5), 502–508.

Article  PubMed  Google Scholar 

Beer, J. C., Nicholas, J., Tustison, P. A., Cook, et al. (2020). Longitudinal combat: A method for harmonizing longitudinal Multi-Scanner imaging data. Neuroimage, 220, 117129.

Article  PubMed  Google Scholar 

Benavoli, A., Corani, G., Mangili, F., & Zaffalon, M. (2015). A bayesian nonparametric procedure for comparing algorithms. 1264–1272.

Benavoli, A., Corani, G., & Demšar, J., and Marco Zaffalon (2017). Time for a change: A tutorial for comparing multiple classifiers through bayesian analysis. Journal of Machine Learning Research, 18(77), 1–36.

Google Scholar 

Berahmand, K., Daneshfar, F., Salehi, E. S., & Li, Y., and Yue Xu (2024). Autoencoders and their applications in machine learning: A survey. Artificial Intelligence Review, 57(2), 28. https://doi.org/10.1007/s10462-023-10662-6

Article  Google Scholar 

Caballero, C., Mistry, S., & Elizabeth, B. T. (2020). Age-Dependent statistical changes of involuntary head motion signatures across autism and controls of the ABIDE repository. Frontiers in Integrative Neuroscience, 14, 23.

Article  PubMed  PubMed Central  Google Scholar 

Cabin, R. J., & Randall, J. M. (2000). To bonferroni or not to bonferroni: When and how are the questions. Bulletin of the Ecological Society of America, 81(3), 246–248.

Google Scholar 

Chen, X., Zhang, H., Zhang, L., Shen, C., Lee, S. W., & Shen, D. (2017). Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Human Brain Mapping, 38(10), 5019–5034. https://doi.org/10.1002/hbm.23711

Article  PubMed  PubMed Central  Google Scholar 

Chen, A. A., Joanne, C., Beer, Nicholas, J., Tustison, et al. (2022). Mitigating site effects in covariance for machine learning in neuroimaging data. Human Brain Mapping, 43(4), 1179–1195.

Article  PubMed  Google Scholar 

Craddock, R., Cameron, G. A., James, P. E., Holtzheimer, I. I. I., Xiaoping, P., Hu, & Helen, S. M. (2012). A whole brain fMRI atlas generated via spatially constrained spectral clustering. Human Brain Mapping, 33(8), 1914–1928.

Article  PubMed  Google Scholar 

Craddock, C., Benhajali, Y., Chu, C., et al. (2013). The neuro bureau preprocessing initiative: Open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics, 7(27), 5.

Google Scholar 

Dewey, B. E., Can Zhao, J. C., Reinhold, et al. (2019). DeepHarmony: A deep learning approach to contrast harmonization across scanner changes. Magnetic Resonance Imaging, 64, 160–170.

Article  PubMed  PubMed Central  Google Scholar 

Di Martino, Adriana, C. G., Li, Y. Q., et al. (2014). The autism brain imaging data exchange: Towards a Large-Scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667.

Article  Google Scholar 

Dinsdale, N. K., Jenkinson, M., Ana, I. L., & Namburete (2021). Deep Learning-Based unlearning of dataset bias for MRI harmonisation and confound removal. Neuroimage, 228(March), 117689. https://doi.org/10.1016/j.neuroimage.2020.117689

Article  PubMed  Google Scholar 

El-Gazzar, Ahmed, R. M., Thomas, & Guido van Wingen (2023). Harmonization techniques for machine learning studies using Multi-Site functional MRI data. BioRxiv, 2023–2006.

Eslami, T., Almuqhim, F., & Raiker, J. S. (2021). and Fahad Saeed. Machine Learning Methods for Diagnosing Autism Spectrum Disorder and Attention- Deficit/Hyperactivity Disorder Using Functional and Structural MRI: A Survey. In Frontiers in Neuroinformatics, vol. 14. Frontiers Media S.A., January. https://doi.org/10.3389/fninf.2020.575999

Fortin, J. P., Sweeney, E. M., Muschelli, J., Ciprian, M., Crainiceanu, R. T., Shinohara, & Alzheimer’s Disease Neuroimaging Initiative. (2016). Removing Inter-Subject technical variability in magnetic resonance imaging studies. Neuroimage, 132, 198–212.

Article  PubMed  Google Scholar 

Fortin, J. P., Parker, D., Birkan Tunç, et al. (2017). Harmonization of Multi-Site diffusion tensor imaging data. Neuroimage, 161(November), 149–170. https://doi.org/10.1016/j.neuroimage.2017.08.047

Article  PubMed  Google Scholar 

Fortin, J. P., Cullen, N., Sheline, Y. I., et al. (2018). Harmonization of cortical thickness measurements across scanners and sites. Neuroimage, 167(February), 104–120. https://doi.org/10.1016/j.neuroimage.2017.11.024

Article  PubMed  Google Scholar 

García, S., Fernández, A., & Luengo, J., and Francisco Herrera (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10), 2044–2064.

Article  Google Scholar 

Glover, G. H., Bryon, A., Mueller, Jessica, A., Turner, et al. (2012). Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. Journal of Magnetic Resonance Imaging, 36(1), 39–54.

Article  PubMed  PubMed Central  Google Scholar 

Goeman, J. J., and Aldo Solari (2014). Multiple hypothesis testing in genomics. Statistics in Medicine, 33(11), 1946–1978.

Article  PubMed  Google Scholar 

Haynes, W. (2013). Bonferroni correction. Encyclopedia of Systems Biology, 154–154.

Hollander, M., & Wolfe, D. A., and Eric Chicken (2013). Nonparametric statistical methods. Wiley.

Hu, F., Lucas, A., Chen, A. A., et al. (2024). Deepcombat: A statistically motivated, Hyperparameter-robust, deep learning approach to harmonization of neuroimaging data. Human Brain Mapping, 45(11), e26708.

Article  PubMed  PubMed Central  Google Scholar 

Hull, L., Petrides, K. V., Allison, C., et al. (2017). Putting on my best normal’: Social camouflaging in adults with autism spectrum conditions. Journal of Autism and Developmental Disorders, 47, 2519–2534.

Article  PubMed  PubMed Central  Google Scholar 

Johnson, W., Evan, C., & Li, and Ariel Rabinovic (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118–127. https://doi.org/10.1093/biostatistics/kxj037

Article  PubMed  Google Scholar 

Jovicich, J., Czanner, S., Douglas Greve, et al. (2006). Reliability in Multi-Site structural MRI studies: Effects of gradient Non-Linearity correction on Phantom and human data. Neuroimage, 30(2), 436–443. https://doi.org/10.1016/j.neuroimage.2005.09.046

Article  PubMed  Google Scholar 

Komandur, D., Gupta, U., Chattopadhyay, T. (2023). Unsupervised harmonization of brain MRI using 3D cyclegans and its effect on brain age prediction. 1–5.

Marek, S., Tervo-Clemmens, B., Calabro, F. J., et al. (2022). Reproducible Brain-Wide association studies require thousands of individuals. Nature, 603(7902), 654–660. https://doi.org/10.1038/s41586-022-04492-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Marzi, C., Giannelli, M., Barucci, A., Tessa, C., & Mascalchi, M., and Stefano Diciotti (2024). Efficacy of MRI data harmonization in the age of machine learning: A multicenter study across 36 datasets. Scientific Data, 11(1), 115.

Article  PubMed  PubMed Central  Google Scholar 

Moyer, D., Steeg, G. V., Chantal, M. W., Tax, & Paul, M. T. (2020). Scanner invariant representations for diffusion MRI harmonization. Magnetic Resonance in Medicine, 84(4), 2174–2189.

Article  PubMed  PubMed Central  Google Scholar 

Nebel, M., Beth, A., Eloyan, Carrie, A., Nettles, et al. (2016). Intrinsic Visual-Motor synchrony correlates with social deficits in autism. Biological Psychiatry, 79(8), 633–641.

Article  PubMed  Google Scholar 

Noble, S., Spann, M. N., Tokoglu, F., Shen, X., & Constable, R. T., and Dustin Scheinost (2017). Influences on the Test–Retest reliability of functional connectivity MRI and its relationship with behavioral utility. Cerebral Cortex, 27(11), 5415–5429.

Article  PubMed  PubMed Central  Google Scholar 

Ojala, M., & Gemma, C. G. (2010). Permutation tests for studying classifier performance. Journal of Machine Learning Research 11 (6).

Parekh, P., Bhalerao, G. V., Viswanath, B., et al. (2022). Sample size requirement for achieving multisite harmonization using structural brain MRI features. Neuroimage, 264, 119768.

Article  PubMed  Google Scholar 

Pomponio, R., Erus, G., Habes, M., et al. (2020). Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. Neuroimage, 208(March), 116450. https://doi.org/10.1016/j.neuroimage.2019.116450

Article  PubMed  Google Scholar 

Serra, G., Mainas, F., Golosio, B., & Retico, A., and Piernicola Oliva (2023). Effect of data harmonization of multicentric dataset in ASD/TD classification. Brain Informatics, 10(1), 32.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif