Andersson, J. L., Jenkinson, M., & Smith, S. (2007). Non-linear registration, aka Spatial normalisation FMRIB technical report TR07JA2. FMRIB Analysis Group of the University of Oxford, 2(1), e21. http://fsl.fmrib.ox.ac.uk/analysis/techrep/tr07ja2/tr07ja2.pdf
Antonopoulos, G., More, S., Raimondo, F., Eickhoff, S. B., Hoffstaedter, F., & Patil, K. R. (2023). A systematic comparison of VBM pipelines and their application to age prediction. Neuroimage, 279, 120292. https://doi.org/10.1016/j.neuroimage.2023.120292
Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ants similarity metric performance in brain image registration. Neuroimage, 54(3), 2033–2044. https://doi.org/10.1016/j.neuroimage.2010.09.025
Boesen, K., Rehm, K., Schaper, K., Stoltzner, S., Woods, R., Luders, E., & Rottenberg, D. (2004). Quantitative comparison of four brain extraction algorithms. Neuroimage, 22(3), 1255–1261. https://doi.org/10.1016/j.neuroimage.2004.03.010
Coalson, T. S., Van Essen, D. C., & Glasser, M. F. (2018). The impact of traditional neuroimaging methods on the Spatial localization of cortical areas. Proc Natl Acad Sci U S A, 115(27), E6356–E6365. https://doi.org/10.1073/pnas.1801582115
Article CAS PubMed PubMed Central Google Scholar
Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173. https://doi.org/10.1006/cbmr.1996.0014
Article CAS PubMed Google Scholar
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., & Hyman, B. T. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980.
Dickie, E. W., Anticevic, A., Smith, D. E., Coalson, T. S., Manogaran, M., Calarco, N., Viviano, J. D., Glasser, M. F., Van Essen, D. C., & Voineskos, A. N. (2019). Ciftify: A framework for surface-based analysis of legacy MR acquisitions. Neuroimage, 197, 818–826.
Dubois, J., & Adolphs, R. (2016). Building a science of individual differences from fMRI. Trends in Cognitive Sciences, 20(6), 425–443. https://doi.org/10.1016/j.tics.2016.03.014
Article PubMed PubMed Central Google Scholar
Eickhoff, S. B., Paus, T., Caspers, S., Grosbras, M. H., Evans, A. C., Zilles, K., & Amunts, K. (2007). Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. [Review]. Neuroimage, 36(3), 511–521. https://doi.org/10.1016/j.neuroimage.2007.03.060
Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D., Goncalves, M., DuPre, E., & Snyder, M. (2019). fMRIPrep: A robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 111–116.
Article CAS PubMed Google Scholar
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.
Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 11050–11055.
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Van Der Kouwe, A., Killiany, R., Kennedy, D., & Klaveness, S. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.
Article CAS PubMed Google Scholar
Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn, B. T., & Dale, A. M. (2004). Sequence-independent segmentation of magnetic resonance images. NeuroImage, 23 Suppl 1, S69-84. https://doi.org/10.1016/j.neuroimage.2004.07.016
Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., Jenkinson, M., & Consortium, W. U. M. H. (2013). The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127
Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L., Auerbach, E. J., Behrens, T. E., Coalson, T. S., Harms, M. P., Jenkinson, M., & Moeller, S. (2016). The human connectome project’s neuroimaging approach. Nature Neuroscience, 19(9), 1175–1187.
Article PubMed PubMed Central Google Scholar
Glasser, M. F., Coalson, T. S., Bijsterbosch, J. D., Harrison, S. J., Harms, M. P., Anticevic, A., Van Essen, D. C., & Smith, S. M. (2018). Using Temporal ICA to selectively remove global noise while preserving global signal in functional MRI data. Neuroimage, 181, 692–717.
Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J., Greene, D. J., Berg, J. J., Ortega, M., Hoyt-Drazen, C., Gratton, C., Sun, H., Hampton, J. M., Coalson, R. S., Nguyen, A. L., McDermott, K. B., Shimony, J. S., Snyder, A. Z., Schlaggar, B. L., Petersen, S. E., Nelson, S. M., & Dosenbach, N. U. F. (2017). Precision functional mapping of individual human brains. Neuron, 95(4), 791–807e797. https://doi.org/10.1016/j.neuron.2017.07.011
Article CAS PubMed PubMed Central Google Scholar
Grabner, G., Janke, A. L., Budge, M. M., Smith, D., Pruessner, J., & Collins, D. L. (2006). Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006: 9th International Conference, Copenhagen, Denmark, October 1–6, 2006. Proceedings, Part II 9.
Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. [Evaluation Study] NeuroImage, 48(1), 63–72. https://doi.org/10.1016/j.neuroimage.2009.06.060
Jenkinson, M. (2018). BET User Guide. FMRIB ANalysis Group. Retrieved August 2 from https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET/UserGuide
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL NeuroImage, 62(2), 782–790.
Karimpoor, M., Tam, F., Strother, S. C., Fischer, C. E., Schweizer, T. A., & Graham, S. J. (2015). A computerized tablet with visual feedback of hand position for functional magnetic resonance imaging. Frontiers in Human Neuroscience, 9, 150.
Article PubMed PubMed Central Google Scholar
Klein, A., Ghosh, S. S., Avants, B., Yeo, B. T., Fischl, B., Ardekani, B., Gee, J. C., Mann, J. J., & Parsey, R. V. (2010). Evaluation of volume-based and surface-based brain image registration methods. Neuroimage, 51(1), 214–220. https://doi.org/10.1016/j.neuroimage.2010.01.091
Michon, K. J., Khammash, D., Simmonite, M., Hamlin, A. M., & Polk, T. A. (2022). Person-specific and precision neuroimaging: Current methods and future directions. Neuroimage, 263, 119589. https://doi.org/10.1016/j.neuroimage.2022.119589
Mohapatra, S., Gosai, A., & Schlaug, G. (2023). Brain extraction comparing segment anything model (sam) and fsl brain extraction tool. arXiv preprint arXiv:2304.04738.
Mumford, J. A. (2017). FEAT registration workaround. Retrieved June 1 from https://mumfordbrainstats.tumblr.com/post/166054797696/feat-registration-workaround
Napadow, V., Dhond, R., Conti, G., Makris, N., Brown, E. N., & Barbieri, R. (2008). Brain correlates of autonomic modulation: Combining heart rate variability with fMRI. Neuroimage, 42(1), 169–177.
Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., & Kriegeskorte, N. (2014). A toolbox for representational similarity analysis. PLoS Computational Biology, 10(4), e1003553.
Novosad, P., Collins, D. L., & Neuroimaging, A. D., I (2018). An efficient and accurate method for robust inter-dataset brain extraction and comparisons with 9 other methods. Human Brain Mapping, 39(11), 4241–4257. https://doi.org/10.1002/hbm.24243
Article PubMed PubMed Central Google Scholar
Oldfield, R.C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4.
Philip, B. A., & Frey, S. H. (2014). Compensatory changes accompanying chronic forced use of the nondominant hand by unilateral amputees. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 34(10), 3622–3631. https://doi.org/10.1523/JNEUROSCI.3770-13.2014
Article CAS PubMed Google Scholar
Philip, B. A., Li, F., Hawkins-Chernof, E., Swamidass, V., & Zwir, I. (2023). Motor assessment with the STEGA iPad app to measure handwriting in children. American Journal of Occupational Therapy, 77(3).
Polimeni, J. R., Renvall, V., Zaretskaya, N., & Fischl, B. (2018). Analysis strategies for high-resolution UHF-fMRI data. Neuroimage, 168, 296–320.
Quilis-Sancho, J., Fernandez-Blazquez, M. A., & Gomez-Ramirez, J. (2020). A comparative analysis of automated MRI brain segmentation in a large longitudinal dataset: Freesurfer vs. FSL. bioRxiv. https://doi.org/10.1101/2020.08.13.249474
Renvall, V., Witzel, T., Wald, L. L., & Polimeni, J. R. (2016). Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data. Neuroimage, 134, 338–354. https://doi.org/10.1016/j.neuroimage.2016.04.004
Seitzman, B. A., Gratton, C., Marek, S., Raut, R. V., Dosenbach, N. U. F., Schlaggar, B. L., Petersen, S. E., & Greene, D. J. (2020). A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum. NeuroImage, 206, 116290. https://doi.org/10.1016/j.neuroimage.2019.116290
Siegel, J. S., Power, J. D., Dubis, J. W., Vogel, A. C., Church, J. A., Schlaggar, B. L., & Petersen, S. E. (2014). Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points. Human Brain Mapping, 35(5), 1981–1996. https://doi.org/10.1002/hbm.22307
Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.
Comments (0)