A Study of Non-Linear Manifold Feature Extraction in Spike Sorting

Abeles, M., & Goldstein, M. H. (1977). Multispike train analysis. Proceedings of the IEEE, 65(5), 762–773.

Article  Google Scholar 

Adamos, D. A., Kosmidis, E. K., & Theophilidis, G. (2008). Performance evaluation of PCA-based spike sorting algorithms. Computer Methods and Programs in Biomedicine, 91(3), 232–244.

Article  PubMed  Google Scholar 

Amid E, Warmuth MK. TriMap: Large-scale Dimensionality Reduction Using Triplets [Internet]. arXiv; 2022 [cited 2025 May 2]. Available from: http://arxiv.org/abs/1910.00204

Ardelean, E. R., Coporîie, A., Ichim, A. M., Dînșoreanu, M., & Mureșan, R. C. (2023). A study of autoencoders as a feature extraction technique for spike sorting. PLoS ONE, 18(3), e0282810.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ardelean ER, Ichim AM, Dînşoreanu M, Mureşan RC. Improved space breakdown method – A robust clustering technique for spike sorting. Front Comput Neurosci [Internet]. 2023 [cited 2023 Feb 20];17. Available from: https://doi.org/10.3389/fncom.2023.1019637

Ardelean, A. I., Ardelean, E. R., Moca, V. V., Mureşan, R. C., & Dînşoreanu, M. Burst detection in neuronal activity. In: 2023 IEEE 19th International Conference on Intelligent Computer Communication and Processing (ICCP) [Internet]. 2023 [cited 2024 Jan 29]. p. 349–56. Available from: https://ieeexplore.ieee.org/document/10398703

Ardelean, E. R., Grosu, G. F., Terebeş, R., & Dînşoreanu, M. Exploiting the Self-Organizing Map for Spike Sorting. In: 2023 IEEE 19th International Conference on Intelligent Computer Communication and Processing (ICCP) [Internet]. 2023 [cited 2024 Jan 29]. p. 363–9. Available from: https://ieeexplore.ieee.org/document/10398692

Ardelean ER, Portase RL, Potolea R, Dînșoreanu M. A path-based distance computation for non-convexity with applications in clustering. Knowl Inf Syst [Internet]. 2024 Nov 1 [cited 2024 Nov 29]; Available from. https://doi.org/10.1007/s10115-024-02275-4

Bakkum D, Radivojevic M, Frey U, Franke F, Hierlemann A, Takahashi H. Parameters for burst detection. Front Comput Neurosci [Internet]. 2014 [cited 2022 Oct 27];7. Available from: https://www.frontiersin.org/articles/10.3389/fncom.2013.00193

Baldi, P., Autoencoders, Unsupervised Learning, and Deep Architectures. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning [Internet]. JMLR Workshop and Conference Proceedings; 2012 [cited 2021 Dec 22]. p. 37–49. Available from: https://proceedings.mlr.press/v27/baldi12a.html

Bear, M. F., Connors, B. W., & Paradiso, M. A. (2015). Neuroscience: Exploring the brain (4th ed.). Wolters Kluwer Health.

Belkin, M., & Niyogi, P. (2003). Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.

Article  Google Scholar 

Berry, T., & Harlim, J. (2016). Variable bandwidth diffusion kernels. Appl Computat Harmon Analys, 40(1), 68–96.

Article  Google Scholar 

Bhatia, K. K., Rao, A., Price, A. N., Wolz, R., Hajnal, J., & Rueckert, D. (2012). Hierarchical manifold learning. International Conference on Medical Image Computing and Computer-Assisted Intervention, 15(Pt 1), 512–519.

Google Scholar 

Borg I, Groenen PJF, editors. Constructing MDS Representations. In: Modern Multidimensional Scaling: Theory and Applications [Internet]. New York, NY: Springer; 2005 [cited 2025 May 2]. p. 19–35. Available from: https://doi.org/10.1007/0-387-28981-X_2

Buccino, A. P., Garcia, S., & Yger, P. (2022). Spike sorting: New trends and challenges of the era of high-density probes. Progress in Biomedical Engineering, 4(2), Article 022005.

Article  Google Scholar 

Busch, E. L., Huang, J., Benz, A., Wallenstein, T., Lajoie, G., Wolf, G., et al. (2023). Multi-view manifold learning of human brain-state trajectories. Nature Computational Science, 3(3), 240–253.

Article  PubMed  PubMed Central  Google Scholar 

Buzsáki G. Rhythms of the Brain [Internet]. New York: Oxford University Press; 2006 [cited 2021 Dec 8]. 464 p. Available from: https://oxford.universitypressscholarship.com/10.1093/acprof:oso/9780195301069.001.0001/acprof-9780195301069

Caliński, T., & Ja, H. (1974). A dendrite method for cluster analysis. Communications in Statistics - Theory and Methods, 3, 1–27. https://doi.org/10.1080/03610927408827101

Caro-Martín, C. R., Delgado-García, J. M., Gruart, A., & Sánchez-Campusano, R. (2018). Spike sorting based on shape, phase, and distribution features, and K-TOPS clustering with validity and error indices. Science and Reports, 8(1), 17796.

Article  Google Scholar 

Carter M, Shieh J. Chapter 4 - Electrophysiology. In: Carter M, Shieh J, editors. Guide to Research Techniques in Neuroscience (Second Edition) [Internet]. San Diego: Academic Press; 2015 [cited 2022 Aug 2]. p. 89–115. Available from: https://www.sciencedirect.com/science/article/pii/B9780128005118000046

Chung, J. E., Magland, J. F., Barnett, A. H., Tolosa, V. M., Tooker, A. C., Lee, K. Y., et al. (2017). A fully automated approach to spike sorting. Neuron, 95(6), 1381-1394.e6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davies, D. L., & Bouldin, D. W. (2009). A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 224–227.

Google Scholar 

Dimensionality reduction: a comparative review | BibSonomy [Internet]. [cited 2022 Aug 11]. Available from: https://www.bibsonomy.org/bibtex/2ed03568f0e9bca9cdaf6b25304e55940/peter.ralph

Dipalo, M., Amin, H., Lovato, L., Moia, F., Caprettini, V., Messina, G., et al. (2017). Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Letters. https://doi.org/10.1021/acs.nanolett.7b01523

Article  PubMed  PubMed Central  Google Scholar 

Donoho, D. L., & Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences, 100(10), 5591–5596.

Article  CAS  Google Scholar 

Dwork C, Kumar R, Naor M, Sivakumar D. Rank aggregation methods for the Web. In: Proceedings of the 10th international conference on World Wide Web [Internet]. New York, NY, USA: Association for Computing Machinery; 2001 [cited 2022 Dec 6]. p. 613–22. (WWW ’01). Available from: https://doi.org/10.1145/371920.372165

Ebbesen, C. L., Reifenstein, E. T., Tang, Q., Burgalossi, A., Ray, S., Schreiber, S., et al. (2016). Cell type-specific differences in spike timing and spike shape in the rat parasubiculum and superficial medial entorhinal cortex. Cell Reports, 16(4), 1005–1015.

Article  CAS  PubMed  Google Scholar 

Eom, J., Park, I. Y., Kim, S., Jang, H., Park, S., Huh, Y., et al. (2021). Deep-learned spike representations and sorting via an ensemble of auto-encoders. Neural Networks, 1(134), 131–142.

Article  Google Scholar 

Estivill-Castro, V. (2002). Why so many clustering algorithms: A position paper. SIGKDD Explor Newsl., 4(1), 65–75.

Article  Google Scholar 

Fowlkes, E. B., & Mallows, C. L. (1983). A method for comparing two hierarchical clusterings. Journal of the American Statistical Association, 78(383), 553–569.

Article  Google Scholar 

Georgiadis V, Petrantonakis PC. SpikeSift: A Computationally Efficient and Drift-Resilient Spike Sorting Algorithm [Internet]. arXiv; 2025 [cited 2025 Aug 6]. Available from: http://arxiv.org/abs/2504.01604

Glaser EM, Marks WB. ON-LINE SEPARATION OF INTERLEAVED NEURONAL PULSE SEQUENCES. In: Enslein K, editor. Data Acquisition and Processing in Biology and Medicine [Internet]. Pergamon; 1968 [cited 2022 Aug 11]. p. 137–56. Available from: https://www.sciencedirect.com/science/article/pii/B9780080035437500124

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Journal of Intelligent Information System, 17(2), 107–145.

Article  Google Scholar 

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.

Article  Google Scholar 

Hulata, E., Segev, R., & Ben-Jacob, E. (2002). A method for spike sorting and detection based on wavelet packets and Shannon’s mutual information. Journal of Neuroscience Methods, 117(1), 1–12.

Article  PubMed  Google Scholar 

Hyvärinen, A. (2013). Independent component analysis: Recent advances. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1984), 20110534.

Article  Google Scholar 

Jia, X., Siegle, J. H., Bennett, C., Gale, S. D., Denman, D. J., Koch, C., et al. (2019). High-density extracellular probes reveal dendritic backpropagation and facilitate neuron classification. Journal of Neurophysiology, 121(5), 1831–1847.

Article  PubMed  Google Scholar 

Joshi, M. V., Kumar, V., & Agarwal, R. C. (2001). Evaluating boosting algorithms to classify rare classes: comparison and improvements. In Proceedings 2001 IEEE international conference on data mining. Presented at the proceedings 2001 IEEE international conference on data mining (pp. 257–264). https://doi.org/10.1109/ICDM.2001.989527

Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., et al. (2017). Fully integrated silicon probes for high-density recording of neural activity. Nature, 551(7679), 232–236.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59–69.

Article  Google Scholar 

Lazarenko, D., & Bonald, T. (2021). Pairwise adjusted mutual information. https://doi.org/10.48550/arXiv.2103.12641

Lefebvre, B., Yger, P., & Marre, O. (2016). Recent progress in multi-electrode spike sorting methods. Journal of Physiology-Paris, 110(4), 327–335.

Article  PubMed  Google Scholar 

Lewicki, M. S. (1998). A review of methods for spike sorting: The detection and classification of neural action potentials. Netw Bristol Engl., 9(4), R53-78.

Article  CAS  Google Scholar 

Litke, A. M., Bezayiff, N., Chichilnisky, E. J., Cunningham, W., Dabrowski, W., Grillo, A. A., et al. (2004). What does the eye tell the brain?: Development of a system for the large-scale recording of retinal output activity. IEEE Transactions on Nuclear Science, 51(4), 1434–1440.

Article  Google Scholar 

Lopes, M. V., Aguiar, E., Ewaldo, S., Eder, S., & Barros, A. K. (2013). ICA feature extraction for spike sorting of single-channel records. In 2013 ISSNIP biosignals and biorobotics conference: Biosignals and robotics for better and safer living (BRC). Presented at the 2013 ISSNIP biosignals and biorobotics conference: Biosignals and robotics for better and safer living (BRC) (pp. 1–5). https://doi.org/10.1109/BRC.2013.6487468

Lopez Pinaya, W. H., Vieira, S., Garcia-Dias, R., & Mechelli, A. (2020). Chapter 11 - Autoencoders. In A. Mechelli & S. Vieira (Eds.), Machine learning (pp. 193–208). Academic Press. https://doi.org/10.1016/B978-0-12-815739-8.00011-0

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1: Statistics (pp. 281–298). University of California Press.

Magland, J., Jun, J. J., Lovero, E., Morley, A. J., Hurwitz, C. L., Buccino, A. P., Garcia, S., & Barnett, A. H. (2020). SpikeForest, reproducible web-facing ground-truth validation of automated neural spike sorters. eLife, 9, e55167. https://doi.org/10.7554/eLife.55167

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval (Illustrated, p. 506). Cambridge University Press.

Book  Google Scholar 

Marcílio-Jr, W. E., Eler, D. M., Paulovich, F. V., & Martins, R. M. (2025). HUMAP: Hierarchical uniform manifold approximation and projection. IEEE Transactions on Visualization and Computer Graphics, 31(9), 5741–5753.

Article  PubMed  Google Scholar 

Marques-Smith A, Neto JP, Lopes G, Nogueira J, Calcaterra L, Frazão J, et al. Simultaneous patch-clamp and dense CMOS probe extracellular recordings from the same cortical neuron in anaesthetized rats. [Internet]. CRCNS; 2018 [cited 2025 May 19]. p. 370080. Available from: CRCNS.org

Marques-Smith A, Neto JP, Lopes G, Nogueira J, Calcaterra L, Frazão J, et al. Recording from the same neuron with high-density CMOS probes and patch-clamp: a ground-truth dataset and an experiment in collaboration [Internet]. bioRxiv; 2020 [cited 2025 May 19]. p. 370080. Available from: https://www.biorxiv.org/content/10.1101/370080v2

McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction [Internet]. arXiv; 2020 [cited 2025 May 2]. Available from: http://arxiv.org/abs/1802.03426

Meilă M, Zhang H. Manifold learning: what, how, and why [Internet]. arXiv; 2023 [cited 2025 May 4]. Available from: http://arxiv.org/abs/2311.03757

Comments (0)

No login
gif