Larvicidal Effects of Nanoliposomes Containing p-Cresol and Houtt. Essential Oil Against and Mosquitoes

Abreu AS, Castanheira EM, Queiroz M-JR, Ferreira PM, Vale-Silva LA, Pinto E (2011) Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3-(4-methoxyphenyl)-1 H-indole-2-carboxylate. Nanoscale Res Lett 6:1–6

Article  Google Scholar 

Afify A, Galizia CG (2014) Gravid females of the mosquito Aedes aegypti avoid oviposition on m-cresol in the presence of the deterrent isomer p-cresol. Parasit Vectors 7:1–10

Article  Google Scholar 

Afonso S, Nogueira J, Cavaleiro C, Ferreira FML, Moreira-Santos M (2024) Lethal toxicity of Thymus mastichina and Helichrysum italicum essential oils to non-target aquatic organisms: tools to screen environmental effects? Water 16(1):137. https://doi.org/10.3390/w16010137

Article  CAS  Google Scholar 

Al-Jumaily EF, Al-Amiry MH (2012) Extraction and purification of terpenes from nutmeg (Myristica fragrans). Al-Nahrain J Sci 15(3):151–160

Google Scholar 

Ali A, Tahir HM, Ghaffar A, Parveen Z, Munir F, Muzamil A, Butt SA, Ijaz F (2025) Screening of larvicidal activities and potential mode of action of Citrus limon (Rutaceae) and Salvia rosmarinus (Lamiaceae) essential oils against Aedes aegypti and Aedes albopictus. J Med Entomol 62(4):905–913. https://doi.org/10.1093/jme/tjaf061

Article  CAS  PubMed  Google Scholar 

Alibabaie M, Safaralizadeh MH (2015) Fumigant toxicity of nutmeg seed essential oil (Myristica fragrans Houtt.)(MF, Myristicaceae) on cowpea weevil, Callosobruchus maculatus F.(Coleoptera: Bruchidae). In: Chakravarthy AK (ed) New horizons in insect science: Towards sustainable pest management (pp. 127–133). Springer India. https://doi.org/10.1007/978-81-322-2089-3_13

Allgeier S, Friedrich A, Brühl CA (2019) Mosquito control based on Bacillus thuringiensis israelensis (Bti) interrupts artificial wetland food chains. Sci Total Environ 686:1173–1184. https://doi.org/10.1016/j.scitotenv.2019.05.358

Article  CAS  PubMed  Google Scholar 

Ashokkumar K, Simal-Gandara J, Murugan M, Dhanya MK, Pandian AJPR (2022) Nutmeg (Myristica fragrans Houtt.) essential oil: a review on its composition, biological, and pharmacological activities. Phytother Res 36(7):2839–2851

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashokkumar K, Vellaikumar S, Muthusamy M, Dhanya M, Aiswarya S (2021) Compositional variation in the leaf, mace, kernel, and seed essential oil of nutmeg (Myristica fragrans Houtt.) from the Western Ghats, India. Nat Prod Res 36(1):432–435

Article  Google Scholar 

Assadpour E, Can Karaça A, Fasamanesh M, Mahdavi SA, Shariat-Alavi M, Feng J, Kharazmi MS, Rehman A, Jafari SM (2024) Application of essential oils as natural biopesticides; recent advances. Crit Rev Food Sci Nutr 64(19):6477–6497. https://doi.org/10.1080/10408398.2023.2170317

Article  PubMed  Google Scholar 

Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Liang L (2016) Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci Food Saf 15(1):143–182. https://doi.org/10.1111/1541-4337.12179

Article  CAS  PubMed  Google Scholar 

Barra P, Etcheverry M, Nesci A (2015) Efficacy of 2, 6-di (t-butyl)-p-cresol (BHT) and the entomopathogenic fungus Purpureocillium lilacinum, to control Tribolium confusum and to reduce aflatoxin B1 in stored maize. J Stored Prod Res 64:72–79. https://doi.org/10.1016/j.jspr.2015.09.003

Article  Google Scholar 

Behura SK, Haugen M, Flannery E, Sarro J, Tessier CR, Severson DW, Duman-Scheel M (2011) Comparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genes. PLoS One 6(7):e21504

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bilal M, Qindeel M, Raza A, Mehmood S, Rahdar A (2021) Stimuli-responsive nanoliposomes as prospective nanocarriers for targeted drug delivery. J Drug Deliv Sci Technol 66:102916. https://doi.org/10.1016/j.jddst.2021.102916

Article  CAS  Google Scholar 

Carolina A, Maman M (2016) Larvicidal activity of essential oils from the leaves and fruits of nutmeg (Myristica fragrans Houtt) against Aedes aegypti (Diptera: Culicidae). Turk J Agric Food Sci Technol 4(7):552–556. https://doi.org/10.24925/turjaf.v4i7.552-556.705

Article  Google Scholar 

Carrera LC, Piedra L, Torres-Cosme R, Castillo AM, Bruno A, Ramírez JL, Martínez D, Rodríguez MM, Bisset JA (2024) Insecticide resistance status and mechanisms in Aedes aegypti and Aedes albopictus from different dengue endemic regions of Panama. Trop Med Health 52(1):69. https://doi.org/10.1186/s41182-024-00637-w

Article  PubMed  PubMed Central  Google Scholar 

Chakroun Y, Snoussi Y, Chehimi MM, Abderrabba M, Savoie JM, Oueslati S (2023) Encapsulation of Ammoides pusila essential oil into mesoporous silica particles for the enhancement of their activity against Fusarium avenaceum and its enniatins production. Molecules 28(7):3194. https://doi.org/10.3390/molecules28073194

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clervil E, Duchemin J-B, Amusant N, Wozniak E, Azam D, Coke M, Huteau D, Le Guével R, Solhi H, Dusfour I (2024) Efficacy and selectivity of Sextonia rubra wood extracts and formulation in the control of Aedes aegypti strains. J Pest Sci. https://doi.org/10.1007/s10340-024-01747-4

Article  Google Scholar 

da Silva AC, Marques AM, Figueiredo MR, de Oliveira Farias JCR, da Câmara CAG, de Moraes MM, de Oliveira APS, Napoleão TH, Paiva PMG, de Aquino TM (2023) Larvicidal activity, enzyme inhibitory effect, and molecular docking by essential oil, hydrolate, aqueous extract, and major compounds from the leaves of Eugenia uniflora against Aedesaegypti. Ind Crops Prod 204:117380. https://doi.org/10.1016/j.indcrop.2023.117380

Article  CAS  Google Scholar 

de Carvalho Brito R, de Moura Pádua LE, da Silva LR, Briozo MEO, Silva PRR, de Carvalho LF, de Andrade Dutra K, Navarro DMdAF, Barbosa DReS, Rojas MOAI (2024) Use of essential oils and α-pinene as insecticides against Sitophilus zeamais and their effects on maize seed germination. Agronomy 14(10):2282. https://doi.org/10.3390/agronomy14102282

de Souza MA, da Silva L, Dos Santos MA, Macêdo MJ, Lacerda-Neto LJ, Coutinho HD, de Oliveira LC, Cunha FA (2020) Larvicidal activity of essential oils against Aedesaegypti (Diptera: Culicidae). Curr Pharm des 26(33):4092–4111

Article  PubMed  Google Scholar 

Devi KC, Devi SS (2013) Insecticidal and oviposition deterrent properties of some spices against coleopteran beetle, Sitophilus oryzae. J Food Sci Technol 50:600–604. https://doi.org/10.1007/s13197-011-0377-1

Article  CAS  PubMed  Google Scholar 

Dusfour I, Vontas J, David J-P, Weetman D, Fonseca DM, Corbel V, Raghavendra K, Coulibaly MB, Martins AJ, Kasai S (2019) Management of insecticide resistance in the major Aedes vectors of arboviruses: advances and challenges. PLoS Negl Trop Dis 13(10):e0007615. https://doi.org/10.1371/journal.pntd.0007615

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellman GL, Courtney KD, Andres JV, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95. https://doi.org/10.1016/0006-2952(61)90145-9

Article  CAS  PubMed  Google Scholar 

Gao H, Cui C, Wang L, Jacobs-Lorena M, Wang S (2020) Mosquito microbiota and implications for disease control. Trends Parasitol 36(2):98–111. https://doi.org/10.1016/j.pt.2019.12.001

Article  PubMed  Google Scholar 

Ghosh A, Chowdhury N, Chandra G (2012) Plant extracts as potential mosquito larvicides. Indian J Med Res 135(5):581–598. https://doi.org/10.4103/0971-5916.104431

Article  CAS  PubMed  PubMed Central  Google Scholar 

Girard M, Martin E, Vallon L, Raquin V, Bellet C, Rozier Y, Desouhant E, Hay A-E, Luis P, Valiente Moro C (2021) Microorganisms associated with mosquito oviposition sites: implications for habitat selection and insect life histories. Microorganisms 9(8):1589. https://doi.org/10.3390/microorganisms9081589

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gómez A, Seccacini E, Zerba E, Licastro SJMdIOC (2011) Comparison of the insecticide susceptibilities of laboratory strains of Aedes aegypti and Aedes albopictus. Mem Inst Oswaldo Cruz 106:993–996. https://doi.org/10.1590/S0074-02762011000800015

Article  PubMed  Google Scholar 

Gonzalez PV, Harburguer L, González-Audino PA, Masuh HM (2016) The use of Aedes aegypti larvae attractants to enhance the effectiveness of larvicides. Parasitol Res 115:2185–2190. https://doi.org/10.1007/s00436-016-4960-2

Article  PubMed  Google Scholar 

Gruľová D, Baranová B, Sedlák V, De Martino L, Zheljazkov VD, Konečná M, Poráčová J, Caputo L, De Feo V (2022) Juniperus horizontalis Moench: chemical composition, herbicidal and insecticidal activities of its essential oil and of its main component, sabinene. Molecules 27(23):8408. https://doi.org/10.3390/molecules27238408

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta L, Deshpande S, Tare V, Sabharwal S (2011) Larvicidal activity of the α-amylase inhibitor from the seeds of Macrotyloma uniflorum (Leguminosae) against Aedes aegypti (Diptera: Culicidae). Int J Trop Insect Sci 31:1–2 69–74. https://doi.org/10.1017/S1742758411000087

Article 

Comments (0)

No login
gif