Clinical and MRI differences in congenital fibrosis of extraocular muscles patients with and variants

Reck AC, Manners R, Hatchwell E. Phenotypic heterogeneity may occur in congenital fibrosis of the extraocular muscles. Br J Ophthalmol. 1998;82:676–9.

Article  PubMed  PubMed Central  Google Scholar 

Xia W, Wei Y, Wu L, Zhao C. Congenital fibrosis of the extraocular muscles: an overview from genetics to management. Children (Basel). 2022;9: 1605.

PubMed  Google Scholar 

Demer JL, Clark RA, Engle EC. Magnetic resonance imaging evidence for widespread orbital dysinnervation in congenital fibrosis of extraocular muscles due to mutations in KIF21A. Invest Ophthalmol Vis Sci. 2005;46:530–9.

Article  PubMed  Google Scholar 

Yazdani A, Chung DC, Abbaszadegan MR, Al-Khayer K, Chan WM, Yazdani M, et al. A novel PHOX2A/ARIX mutation in an Iranian family with congenital fibrosis of extraocular muscles type 2 (CFEOM2). Am J Ophthalmol. 2003;136:861–5.

Article  PubMed  Google Scholar 

Demer JL, Clark RA, Tischfield MA, Engle EC. Evidence of an asymmetrical endophenotype in congenital fibrosis of extraocular muscles type 3 resulting from TUBB3 mutations. Invest Ophthalmol Vis Sci. 2010;51:4600–11.

Article  PubMed  PubMed Central  Google Scholar 

Tukel T, Uzumcu A, Gezer A, Kayserili H, Yuksel-Apak M, Uyguner O, et al. A new syndrome, congenital extraocular muscle fibrosis with ulnar hand anomalies, maps to chromosome 21qter. J Med Genet. 2005;42:408–15.

Article  PubMed  PubMed Central  Google Scholar 

Munezane H, Oizumi H, Wakabayashi T, Nishio S, Hirasawa T, Sato T, et al. Roles of collagen XXV and its putative receptors PTPσ/δ in intramuscular motor innervation and congenital cranial dysinnervation disorder. Cell Rep. 2019;29:4362-76.e6.

Article  PubMed  Google Scholar 

Jia H, Jiao Y, Chang Q, Liang Y, Man F. Clinical phenotype and MRI findings of congenital extraocular muscle fibrosis patients with different TUBB3 gene mutations. Ophthalmol China. 2018;27:276–80 (in Chinese).

Google Scholar 

Soliani L, Spagnoli C, Salerno GG, Mehine M, Rizzi S, Frattini D, et al. A novel de novo KIF21A variant in a patient with congenital fibrosis of the extraocular muscles with a syndromic CFEOM phenotype. J Neuroophthalmol. 2021;41:e85–8.

Article  PubMed  Google Scholar 

Cooymans P, Al-Zuhaibi S, Al-Senawi R, Ganesh A. Congenital fibrosis of the extraocular muscles. Oman J Ophthalmol. 2010;3:70–4.

Article  PubMed  PubMed Central  Google Scholar 

Demer JL, Ortube MC, Engle EC, Thacker N. High-resolution magnetic resonance imaging demonstrates abnormalities of motor nerves and extraocular muscles in patients with neuropathic strabismus. J AAPOS. 2006;10:135–42.

Article  PubMed  PubMed Central  Google Scholar 

Kim JH, Hwang JM. Hypoplastic oculomotor nerve and absent abducens nerve in congenital fibrosis syndrome and synergistic divergence with magnetic resonance imaging. Ophthalmology. 2005;112:728–32.

Article  PubMed  Google Scholar 

Kim JH, Hwang JM. Imaging of cranial nerves III, IV, VI in congenital cranial dysinnervation disorders. Korean J Ophthalmol. 2017;31:183–93.

Article  PubMed  PubMed Central  Google Scholar 

Yamada K, Andrews C, Chan WM, McKeown CA, Magli A, de Berardinis T, et al. Heterozygous mutations of the kinesin KIF21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1). Nat Genet. 2003;35:318–21.

Article  PubMed  Google Scholar 

Tischfield MA, Baris HN, Wu C, Rudolph G, Van Maldergem L, He W, et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell. 2010;140:74–87.

Article  PubMed  PubMed Central  Google Scholar 

Jurgens JA, Barry BJ, Lemire G, Chan WM, Whitman MC, Shaaban S, et al. Novel variants in TUBA1A cause congenital fibrosis of the extraocular muscles with or without malformations of cortical brain development. Eur J Hum Genet. 2021;29:816–26.

Article  PubMed  PubMed Central  Google Scholar 

Cederquist GY, Luchniak A, Tischfield MA, Peeva M, Song Y, Menezes MP, et al. An inherited TUBB2B mutation alters a kinesin-binding site and causes polymicrogyria, CFEOM and axon dysinnervation. Hum Mol Genet. 2012;21:5484–99.

Article  PubMed  PubMed Central  Google Scholar 

Shinwari JM, Khan A, Awad S, Shinwari Z, Alaiya A, Alanazi M, et al. Recessive mutations in COL25A1 are a cause of congenital cranial dysinnervation disorder. Amj Hum Genet. 2015;96:147–52.

Article  Google Scholar 

Al-Haddad C, Boustany RM, Rachid E, Ismail K, Barry B, Chan WM, et al. KIF21A pathogenic variants cause congenital fibrosis of extraocular muscles type 3. Ophthalmic Genet. 2021;42:195–9.

Article  PubMed  Google Scholar 

Thomas MG, Maconachie GDE, Constantinescu CS, Chan WM, Barry B, Hisaund M, et al. Congenital monocular elevation deficiency associated with a novel TUBB3 gene variant. Br J Ophthalmol. 2020;104:547–50.

Article  PubMed  Google Scholar 

Jia H, Ma Q, Liang Y, Wang D, Chang Q, Zhao B, et al. Clinical and genetic characteristics of Chinese patients with congenital cranial dysinnervation disorders. Orphanet J Rare Dis. 2022;17:431.

Article  PubMed  PubMed Central  Google Scholar 

Cheng L, Desai J, Miranda CJ, Duncan JS, Qiu W, Nugent AA, et al. Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling. Neuron. 2014;82:334–49.

Article  PubMed  PubMed Central  Google Scholar 

Poirier K, Saillour Y, Bahi-Buisson N, Jaglin XH, Fallet-Bianco C, Nabbout R, et al. Mutations in the neuronal ß-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum Mol Genet. 2010;19:4462–73.

Article  PubMed  PubMed Central  Google Scholar 

Lim KH, Engle EC, Demer JL. Abnormalities of the oculomotor nerve in congenital fibrosis of the extraocular muscles and congenital oculomotor palsy. Invest Ophthalmol Vis Sci. 2007;48:1601–6.

Article  PubMed  Google Scholar 

Jae Hyoung Kim J-MH. Imaging of cranial nerves III, IV, VI in congenital cranial dysinnervation disorders. Korean J Ophthalmol. 2017;31:183–93.

Article  PubMed  PubMed Central  Google Scholar 

Thomas MG, Maconachie GDE, Kuht HJ, Chan WM, Sheth V, Hisaund M, et al. Optic nerve head and retinal abnormalities associated with congenital fibrosis of the extraocular muscles. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22052575.

Article  PubMed  PubMed Central  Google Scholar 

Puri D, Barry BJ, Engle EC. TUBB3 and KIF21A in neurodevelopment and disease. Front Neurosci. 2023;17:1226181.

Article  PubMed  PubMed Central  Google Scholar 

Ali Z, Xing C, Anwar D, Itani K, Weakley D, Gong X, et al. A novel de novo KIF21A mutation in a patient with congenital fibrosis of the extraocular muscles and Möbius syndrome. Mol vis. 2014;20:368–75.

PubMed  PubMed Central  Google Scholar 

Marszalek JR, Weiner JA, Farlow SJ, Chun J, Goldstein LS. Novel dendritic kinesin sorting identified by different process targeting of two related kinesins: KIF21A and KIF21B. J Cell Biol. 1999;145:469–79.

Article  PubMed  PubMed Central  Google Scholar 

Di Fabio R, Comanducci G, Piccolo F, Santorelli FM, De Berardinis T, Tessa A, et al. Cerebellar atrophy in congenital fibrosis of the extraocular muscles type 1. Cerebellum. 2013;12:140–3.

Article  PubMed  Google Scholar 

Tischfield MA, Cederquist GY, Gupta ML Jr, Engle EC. Phenotypic spectrum of the tubulin-related disorders and functional implications of disease-causing mutations. Curr Opin Genet Dev. 2011;21:286–94.

Article  PubMed  PubMed Central  Google Scholar 

Whitman MC, Andrews C, Chan WM, Tischfield MA, Stasheff SF, Brancati F, et al. Two unique TUBB3 mutations cause both CFEOM3 and malformations of cortical development. Am J Med Genet A. 2016;170A:297–305.

Article  PubMed  Google Scholar 

van der Vaart B, van Riel WE, Doodhi H, Kevenaar JT, Katrukha EA, Gumy L, et al. CFEOM1-associated kinesin KIF21A is a cortical microtubule growth inhibitor. Devl Cell. 2013;27:145–60.

Article  Google Scholar 

Comments (0)

No login
gif