Ferreira D, Perestelo-Perez L, Westman E, Wahlund L-o, Sarria A, Serrano-Aguilar P (2014) Meta-review of CSF core biomarkers in Alzheimer’s disease: The state-of-the-art after the new revised diagnostic criteria review. Front Aging Neurosci 6:47. https://doi.org/10.3389/fnagi.2014.00047
Article PubMed PubMed Central Google Scholar
Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR, Jagust W, Trojanowski JQ, Toga AW, Beckett L (2005) Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s & Dementia 1(1):55–66. https://doi.org/10.1016/j.jalz.2005.06.003
Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292. https://doi.org/10.1016/j.jalz.2011.03.003
Warren SL, Reid E, Whitfield P, Moustafa AA (2022) Subjective memory complaints as a predictor of mild cognitive impairment and Alzheimer’s disease. Discov Psychol 2(1):13. https://doi.org/10.1007/s44202-022-00031-9
Lin S-Y, Lin P-C, Lin Y-C et al (2022) The clinical course of early and late mild cognitive impairment. Front Neurol 13:685636. https://doi.org/10.3389/fneur.2022.685636
Article PubMed PubMed Central Google Scholar
López OL, DeKosky ST. Clinical symptoms in Alzheimer's disease. Handbook of Clinical Neurology. Elsevier; 2008:207–216
Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210
Article PubMed PubMed Central CAS Google Scholar
Dickerson BC, Goncharova I, Sullivan MP et al (2001) MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiol Aging 22(5):747–754. https://doi.org/10.1016/S0197-4580(01)00271-8
Article PubMed CAS Google Scholar
Fox NC, Warrington EK, Freeborough PA et al (1996) Presymptomatic hippocampal atrophy in Alzheimer’s disease: A longitudinal MRI study. Brain 119(6):2001–2007. https://doi.org/10.1093/brain/119.6.2001
Killiany RJ, Gomez-Isla T, Moss M et al (2000) Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann Neurol 47(4):430–439. https://doi.org/10.1002/1531-8249(200004)47:4%3c430::AID-ANA5%3e3.0.CO;2-I
Article PubMed CAS Google Scholar
Hojjati SH, Babajani-Feremi A, Alzheimer’s Disease Neuroimaging Initiative (2022) Prediction and modeling of neuropsychological scores in Alzheimer’s disease using multimodal neuroimaging data and artificial neural networks. Front Computational Neurosci 15:769982. https://doi.org/10.3389/fncom.2021.769982
Murrell JR, Price B, Lane KA et al (2006) Association of Apolipoprotein E Genotype and Alzheimer disease in african americans. Arch Neurol 63(3):431–434. https://doi.org/10.1001/archneur.63.3.431
Article PubMed PubMed Central Google Scholar
Strittmatter WJ, Saunders AM, Schmechel D et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci 90(5):1977–1981. https://doi.org/10.1073/pnas.90.5.1977
Article PubMed PubMed Central CAS Google Scholar
Fortea J, Pegueroles J, Alcolea D et al (2024) APOE4 homozygozity represents a distinct genetic form of Alzheimer’s disease. Nat Med 30(5):1284–1291. https://doi.org/10.1038/s41591-024-02931-w
Article PubMed CAS Google Scholar
Shaw G (2024) New study characterizing APOE4 homozygosity as distinct form of Alzheimer’s Sparks Debate. Neurol Today 24(12):1–9
ADNIMERGE: Alzheimer’s disease neuroimaging initiative. Version R package version 0.0.1. 2023.
Singh G, Ramanathan M (2023) Repurposing artificial intelligence tools for disease modeling: Case study of face recognition deficits in neurodegenerative diseases. Clin Pharmacol Ther 114(4):862–873. https://doi.org/10.1002/cpt.2987
Article PubMed CAS Google Scholar
R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2022. https://www.R-project.org/
Peterson RA (2021) Finding optimal normalizing transformations via bestNormalize. The R Journal 13(1):310–329. https://doi.org/10.32614/RJ-2021-041
Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01
Rohit M, Levine A, Hinkin C et al (2007) Education correction using years in school or reading grade-level equivalent? Comparing the accuracy of two methods in diagnosing HIV-associated neurocognitive impairment. J Int Neuropsychol Soc 13(3):462–470. https://doi.org/10.1017/S1355617707070506
Article PubMed PubMed Central Google Scholar
Lüdecke D (2018) Ggeffects Tidy data frames of marginal effects from regression models. J Open Source Softw 3(26):772
Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D (2021) Performance: An R Package for assessment, comparison and testing of statistical models. J Open Source Software 6(60):3139
Samtani MN, Farnum M, Lobanov V et al (2012) An improved model for disease progression in patients from the Alzheimer’s disease neuroimaging initiative. J Clin Pharmacol 52(5):629–644. https://doi.org/10.1177/0091270011405497
Samtani MN, Raghavan N, Shi Y et al (Jan2013) Disease progression model in subjects with mild cognitive impairment from the Alzheimer’s disease neuroimaging initiative: CSF biomarkers predict population subtypes. Br J Clin Pharmacol 75(1):146–161. https://doi.org/10.1111/j.1365-2125.2012.04308.x
Samtani MN, Raghavan N, Novak G, Nandy P, Narayan VA (2014) Disease progression model for Clinical Dementia Rating-Sum of Boxes in mild cognitive impairment and Alzheimer’s subjects from the Alzheimer’s Disease Neuroimaging Initiative. Neuropsychiatr Dis Treat 10:929–952. https://doi.org/10.2147/NDT.S62323
Article PubMed PubMed Central Google Scholar
Ito K, Corrigan B, Zhao Q et al (2011) Disease progression model for cognitive deterioration from Alzheimer’s Disease Neuroimaging Initiative database. Alzheimers Dement 7(2):151–160. https://doi.org/10.1016/j.jalz.2010.03.018
Schauer SP, Toth B, Lee J et al (2024) Pharmacodynamic effects of semorinemab on plasma and CSF biomarkers of Alzheimer’s disease pathophysiology. Alzheimers Dement 20(12):8855–8866. https://doi.org/10.1002/alz.14346
Article PubMed PubMed Central CAS Google Scholar
Jamalian S, Dolton M, Chanu P et al (2023) Modeling Alzheimer’s disease progression utilizing clinical trial and ADNI data to predict longitudinal trajectory of CDR-SB. CPT Pharmacometrics Syst Pharmacol 12(7):1029–1042. https://doi.org/10.1002/psp4.12974
Article PubMed PubMed Central CAS Google Scholar
Ramakrishnan V, Friedrich C, Witt C et al (2023) Quantitative systems pharmacology model of the amyloid pathway in Alzheimer’s disease: Insights into the therapeutic mechanisms of clinical candidates. CPT Pharmacometrics Syst Pharmacol 12(1):62–73. https://doi.org/10.1002/psp4.12876
Article PubMed CAS Google Scholar
Elhefnawy ME, Patson N, Mouksassi S et al (2025) Quantifying natural amyloid plaque accumulation in the continuum of Alzheimer’s disease using ADNI. J Pharmacokinet Pharmacodyn 52(1):15. https://doi.org/10.1007/s10928-024-09959-y
Article PubMed CAS Google Scholar
Delor I, Charoin JE, Gieschke R, Retout S, Jacqmin P (2013) Modeling Alzheimer’s Disease Progression Using Disease Onset Time and Disease Trajectory Concepts Applied to CDR-SOB Scores From ADNI. CPT Pharmacometrics Syst Pharmacol 2(10). https://doi.org/10.1038/psp.2013.54
Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923. https://doi.org/10.1126/science.8346443
Comments (0)