Summerfield SG, Yates JWT, Fairman DA (2022) Free drug theory - no longer just a hypothesis?? Pharm Res 39(2):213–222. https://doi.org/10.1007/s11095-022-03172-7
Article CAS PubMed Google Scholar
Orlando R, De Martin S, Pegoraro P, Quintieri L, Palatini P (2009) Irreversible CYP3A inhibition accompanied by plasma protein-binding displacement: a comparative analysis in subjects with normal and impaired liver function. Clin Pharmacol Ther 85(3):319–326. https://doi.org/10.1038/clpt.2008.216
Article CAS PubMed Google Scholar
Schalkwijk S, Greupink R, Burger D (2017) Free dug concentrations in pregnancy: bound to measure unbound? Br J Clin Pharmacol 83(12):2595–2598. https://doi.org/10.1111/bcp.13432
Article PubMed PubMed Central Google Scholar
Rolan PE (1994) Plasma protein binding displacement interactions–why are they still regarded as clinically important? Br J Clin Pharmacol 37(2):125–128. https://doi.org/10.1111/j.1365-2125.1994.tb04251.x
Article CAS PubMed PubMed Central Google Scholar
T’Jollyn H, Vermeulen A, Van Bocxlaer J, Colin P (2018) A physiologically based pharmacokinetic perspective on the clinical utility of albumin-based dose adjustments in critically ill patients. Clin Pharmacokinet 57(1):59–69. https://doi.org/10.1007/s40262-017-0549-x
Article CAS PubMed Google Scholar
Baker M, Parton T (2007) Kinetic determinants of hepatic clearance: plasma protein binding and hepatic uptake. Xenobiotica 37(10–11):1110–1134. https://doi.org/10.1080/00498250701658296
Article CAS PubMed Google Scholar
Yan Z, Ma L, Hwang N, Huang J, Kenny JR, Hop C (2024) Using the dynamic well-stirred model to extrapolate hepatic clearance of OATP substrates without assuming albumin-mediated hepatic drug uptake. Drug Metab Dispos 52(6):548–554. https://doi.org/10.1124/dmd.124.001645
Article CAS PubMed Google Scholar
Jusko WJ, Piekoszewski W, Klintmalm GB, Shaefer MS, Hebert MF, Piergies AA, Lee CC, Schechter P, Mekki QA (1995) Pharmacokinetics of tacrolimus in liver transplant patients. Clin Pharmacol Ther 57(3):281–290. https://doi.org/10.1016/0009-9236(95)90153-1
Article CAS PubMed Google Scholar
Zaghloul I, Ptachcinski RJ, Burckart GJ, Van Thiel D, Starzel TE, Venkataramanan R (1987) Blood protein binding of cyclosporine in transplant patients. J Clin Pharmacol 27(3):240–242. https://doi.org/10.1002/j.1552-4604.1987.tb02192.x
Article CAS PubMed PubMed Central Google Scholar
Chen Q, Tung EC, Ciccotto SL, Strauss JR, Ortiga R, Ramsay KA, Tang W (2008) Effect of the anticoagulant ethylenediamine tetra-acetic acid (EDTA) on the estimation of pharmacokinetic parameters: a case study with Tigecycline and Ciprofloxacin. Xenobiotica 38(1):76–86. https://doi.org/10.1080/00498250701678955
Article CAS PubMed Google Scholar
Bongard HJ, Pluim D, Waardenburg RC, Ravic M, Beijnen JH, Schellens JH (2003) In vitro pharmacokinetic study of the novel anticancer agent E7070: red blood cell and plasma protein binding in human blood. Anticancer Drugs 14(6):405–410. https://doi.org/10.1097/00001813-200307000-00003
van Zuylen L, Karlsson MO, Verweij J, Brouwer E, de Bruijn P, Nooter K, Stoter G, Sparreboom A (2001) Pharmacokinetic modeling of Paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother Pharmacol 47(4):309–318. https://doi.org/10.1007/s002800000215
Article CAS PubMed Google Scholar
Yue CS, Huynh HH, Raymond C, Charbonneau L, Roy L (2013) Population pharmacokinetic and pharmacodynamic modeling of acetazolamide in peritoneal dialysis patients and healthy volunteers. J Pharm Pharm Sci 16(1):89–98. https://doi.org/10.18433/j3qg7z
Nation RL, Theuretzbacher U, Tsuji BT, International Society of Anti-, Infective P (2018) Concentration-dependent plasma protein binding: expect the unexpected. Eur J Pharm Sci 122:341–346. https://doi.org/10.1016/j.ejps.2018.07.004
Article CAS PubMed Google Scholar
Ludden TM (1991) Nonlinear pharmacokinetics: clinical implications. Clin Pharmacokinet 20(6):429–446. https://doi.org/10.2165/00003088-199120060-00001
Article CAS PubMed Google Scholar
Gillespie WR (1993) Generalized pharmacokinetic modeling for drugs with nonlinear binding: I. Theoretical framework. J Pharmacokinet Biopharm 21(1):99–124. https://doi.org/10.1007/bf01061777
Article CAS PubMed Google Scholar
Legg B, Gupta SK, Rowland M (1988) A model to account for the variation in cyclosporin binding to plasma lipids in transplant patients. Ther Drug Monit 10(1):20–27
Article CAS PubMed Google Scholar
Zandvliet AS, Schellens JHM, Copalu W, Beijnen JH, Huitema ADR (2006) A Semi-Physiological population Pharmacokinetic model describing the Non-linear disposition of indisulam. J Pharmacokinet Pharmacodyn 33(5):543–570. https://doi.org/10.1007/s10928-006-9021-5
Article CAS PubMed Google Scholar
Dorn C, Kratzer A, Liebchen U, Schleibinger M, Murschhauser A, Schlossmann J, Kees F, Simon P, Kees MG (2018) Impact of experimental variables on the protein binding of Tigecycline in human plasma as determined by ultrafiltration. J Pharm Sci 107(2):739–744. https://doi.org/10.1016/j.xphs.2017.09.006
Article CAS PubMed Google Scholar
Kenworthy KE, Clarke SE, Andrews J, Houston JB (2001) Multisite kinetic models for CYP3A4: simultaneous activation and inhibition of diazepam and testosterone metabolism. Drug Metab Dispos 29(12):1644–1651
Carneiro IA, Drakeley CJ, Owusu-Agyei S, Mmbando B, Chandramohan D (2007) Haemoglobin and haematocrit: is the threefold conversion valid for assessing anaemia in malaria-endemic settings? Malar J 6:67. https://doi.org/10.1186/1475-2875-6-67
Article CAS PubMed PubMed Central Google Scholar
Kambali S, Taj A (2018) Polycythemia vera masked due to severe iron deficiency anemia. Hematol Oncol Stem Cell Ther 11(1):38–40. https://doi.org/10.1016/j.hemonc.2016.08.007
Article CAS PubMed Google Scholar
Jamei M, Marciniak S, Edwards D, Wragg K, Feng K, Barnett A, Rostami-Hodjegan A (2013) The simcyp population based simulator: architecture, implementation, and quality assurance. Silico Pharmacol 1:9–9
Rostami-Hodjegan A, Tamai I, Pang KS (2012) Physiologically based pharmacokinetic (PBPK) modeling: it is here to stay! Biopharm Drug Dispos 33(2):47–50. https://doi.org/10.1002/bdd.1776
Article CAS PubMed Google Scholar
Zhao P, Rowland M, Huang SM (2012) Best practice in the use of physiologically based Pharmacokinetic modeling and simulation to address clinical Pharmacology regulatory questions. Clin Pharmacol Ther 92(1):17–20. https://doi.org/10.1038/clpt.2012.68
Article CAS PubMed Google Scholar
El-Khateeb E, Burkhill S, Murby S, Amirat H, Rostami‐Hodjegan A, Ahmad A (2021) Physiological‐based pharmacokinetic modeling trends in pharmaceutical drug development over the last 20‐years; in‐depth analysis of applications, organizations, and platforms. Biopharm Drug Dispos 42(4):107–117. https://doi.org/10.1002/bdd.2257
Article CAS PubMed Google Scholar
Rostami-Hodjegan A, Bois FY (2021) Opening a debate on open-source modeling tools: Pouring fuel on fire versus extinguishing the flare of a healthy debate. CPT Pharmacometrics Syst Pharmacol 10(5):420–427. https://doi.org/10.1002/psp4.12615
Rajput AJ, Aldibani HKA, Rostami-Hodjegan A (2023) In-depth analysis of patterns in selection of different physiologically based pharmacokinetic modeling tools: part I - applications and rationale behind the use of open source-code software. Biopharm Drug Dispos 44(3):274–285. https://doi.org/10.1002/bdd.2357
Article CAS PubMed Google Scholar
Aldibani HKA, Rajput AJ, Rostami-Hodjegan A (2023) In‐depth analysis of patterns in selection of different physiologically‐based pharmacokinetic modeling tools: part II—assessment of model reusability and comparison between open and non‐open source‐code software. Biopharm Drug Dispos 44(4):292–300
Comments (0)