Concentration-dependent blood binding: assessing implications through physiologically based Pharmacokinetic modeling of tacrolimus as a case example

Summerfield SG, Yates JWT, Fairman DA (2022) Free drug theory - no longer just a hypothesis?? Pharm Res 39(2):213–222. https://doi.org/10.1007/s11095-022-03172-7

Article  CAS  PubMed  Google Scholar 

Orlando R, De Martin S, Pegoraro P, Quintieri L, Palatini P (2009) Irreversible CYP3A inhibition accompanied by plasma protein-binding displacement: a comparative analysis in subjects with normal and impaired liver function. Clin Pharmacol Ther 85(3):319–326. https://doi.org/10.1038/clpt.2008.216

Article  CAS  PubMed  Google Scholar 

Schalkwijk S, Greupink R, Burger D (2017) Free dug concentrations in pregnancy: bound to measure unbound? Br J Clin Pharmacol 83(12):2595–2598. https://doi.org/10.1111/bcp.13432

Article  PubMed  PubMed Central  Google Scholar 

Rolan PE (1994) Plasma protein binding displacement interactions–why are they still regarded as clinically important? Br J Clin Pharmacol 37(2):125–128. https://doi.org/10.1111/j.1365-2125.1994.tb04251.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

T’Jollyn H, Vermeulen A, Van Bocxlaer J, Colin P (2018) A physiologically based pharmacokinetic perspective on the clinical utility of albumin-based dose adjustments in critically ill patients. Clin Pharmacokinet 57(1):59–69. https://doi.org/10.1007/s40262-017-0549-x

Article  CAS  PubMed  Google Scholar 

Baker M, Parton T (2007) Kinetic determinants of hepatic clearance: plasma protein binding and hepatic uptake. Xenobiotica 37(10–11):1110–1134. https://doi.org/10.1080/00498250701658296

Article  CAS  PubMed  Google Scholar 

Yan Z, Ma L, Hwang N, Huang J, Kenny JR, Hop C (2024) Using the dynamic well-stirred model to extrapolate hepatic clearance of OATP substrates without assuming albumin-mediated hepatic drug uptake. Drug Metab Dispos 52(6):548–554. https://doi.org/10.1124/dmd.124.001645

Article  CAS  PubMed  Google Scholar 

Jusko WJ, Piekoszewski W, Klintmalm GB, Shaefer MS, Hebert MF, Piergies AA, Lee CC, Schechter P, Mekki QA (1995) Pharmacokinetics of tacrolimus in liver transplant patients. Clin Pharmacol Ther 57(3):281–290. https://doi.org/10.1016/0009-9236(95)90153-1

Article  CAS  PubMed  Google Scholar 

Zaghloul I, Ptachcinski RJ, Burckart GJ, Van Thiel D, Starzel TE, Venkataramanan R (1987) Blood protein binding of cyclosporine in transplant patients. J Clin Pharmacol 27(3):240–242. https://doi.org/10.1002/j.1552-4604.1987.tb02192.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Q, Tung EC, Ciccotto SL, Strauss JR, Ortiga R, Ramsay KA, Tang W (2008) Effect of the anticoagulant ethylenediamine tetra-acetic acid (EDTA) on the estimation of pharmacokinetic parameters: a case study with Tigecycline and Ciprofloxacin. Xenobiotica 38(1):76–86. https://doi.org/10.1080/00498250701678955

Article  CAS  PubMed  Google Scholar 

Bongard HJ, Pluim D, Waardenburg RC, Ravic M, Beijnen JH, Schellens JH (2003) In vitro pharmacokinetic study of the novel anticancer agent E7070: red blood cell and plasma protein binding in human blood. Anticancer Drugs 14(6):405–410. https://doi.org/10.1097/00001813-200307000-00003

Article  PubMed  Google Scholar 

van Zuylen L, Karlsson MO, Verweij J, Brouwer E, de Bruijn P, Nooter K, Stoter G, Sparreboom A (2001) Pharmacokinetic modeling of Paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother Pharmacol 47(4):309–318. https://doi.org/10.1007/s002800000215

Article  CAS  PubMed  Google Scholar 

Yue CS, Huynh HH, Raymond C, Charbonneau L, Roy L (2013) Population pharmacokinetic and pharmacodynamic modeling of acetazolamide in peritoneal dialysis patients and healthy volunteers. J Pharm Pharm Sci 16(1):89–98. https://doi.org/10.18433/j3qg7z

Article  PubMed  Google Scholar 

Nation RL, Theuretzbacher U, Tsuji BT, International Society of Anti-, Infective P (2018) Concentration-dependent plasma protein binding: expect the unexpected. Eur J Pharm Sci 122:341–346. https://doi.org/10.1016/j.ejps.2018.07.004

Article  CAS  PubMed  Google Scholar 

Ludden TM (1991) Nonlinear pharmacokinetics: clinical implications. Clin Pharmacokinet 20(6):429–446. https://doi.org/10.2165/00003088-199120060-00001

Article  CAS  PubMed  Google Scholar 

Gillespie WR (1993) Generalized pharmacokinetic modeling for drugs with nonlinear binding: I. Theoretical framework. J Pharmacokinet Biopharm 21(1):99–124. https://doi.org/10.1007/bf01061777

Article  CAS  PubMed  Google Scholar 

Legg B, Gupta SK, Rowland M (1988) A model to account for the variation in cyclosporin binding to plasma lipids in transplant patients. Ther Drug Monit 10(1):20–27

Article  CAS  PubMed  Google Scholar 

Zandvliet AS, Schellens JHM, Copalu W, Beijnen JH, Huitema ADR (2006) A Semi-Physiological population Pharmacokinetic model describing the Non-linear disposition of indisulam. J Pharmacokinet Pharmacodyn 33(5):543–570. https://doi.org/10.1007/s10928-006-9021-5

Article  CAS  PubMed  Google Scholar 

Dorn C, Kratzer A, Liebchen U, Schleibinger M, Murschhauser A, Schlossmann J, Kees F, Simon P, Kees MG (2018) Impact of experimental variables on the protein binding of Tigecycline in human plasma as determined by ultrafiltration. J Pharm Sci 107(2):739–744. https://doi.org/10.1016/j.xphs.2017.09.006

Article  CAS  PubMed  Google Scholar 

Kenworthy KE, Clarke SE, Andrews J, Houston JB (2001) Multisite kinetic models for CYP3A4: simultaneous activation and inhibition of diazepam and testosterone metabolism. Drug Metab Dispos 29(12):1644–1651

CAS  PubMed  Google Scholar 

Carneiro IA, Drakeley CJ, Owusu-Agyei S, Mmbando B, Chandramohan D (2007) Haemoglobin and haematocrit: is the threefold conversion valid for assessing anaemia in malaria-endemic settings? Malar J 6:67. https://doi.org/10.1186/1475-2875-6-67

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kambali S, Taj A (2018) Polycythemia vera masked due to severe iron deficiency anemia. Hematol Oncol Stem Cell Ther 11(1):38–40. https://doi.org/10.1016/j.hemonc.2016.08.007

Article  CAS  PubMed  Google Scholar 

Jamei M, Marciniak S, Edwards D, Wragg K, Feng K, Barnett A, Rostami-Hodjegan A (2013) The simcyp population based simulator: architecture, implementation, and quality assurance. Silico Pharmacol 1:9–9

Article  Google Scholar 

Rostami-Hodjegan A, Tamai I, Pang KS (2012) Physiologically based pharmacokinetic (PBPK) modeling: it is here to stay! Biopharm Drug Dispos 33(2):47–50. https://doi.org/10.1002/bdd.1776

Article  CAS  PubMed  Google Scholar 

Zhao P, Rowland M, Huang SM (2012) Best practice in the use of physiologically based Pharmacokinetic modeling and simulation to address clinical Pharmacology regulatory questions. Clin Pharmacol Ther 92(1):17–20. https://doi.org/10.1038/clpt.2012.68

Article  CAS  PubMed  Google Scholar 

El-Khateeb E, Burkhill S, Murby S, Amirat H, Rostami‐Hodjegan A, Ahmad A (2021) Physiological‐based pharmacokinetic modeling trends in pharmaceutical drug development over the last 20‐years; in‐depth analysis of applications, organizations, and platforms. Biopharm Drug Dispos 42(4):107–117. https://doi.org/10.1002/bdd.2257

Article  CAS  PubMed  Google Scholar 

Rostami-Hodjegan A, Bois FY (2021) Opening a debate on open-source modeling tools: Pouring fuel on fire versus extinguishing the flare of a healthy debate. CPT Pharmacometrics Syst Pharmacol 10(5):420–427. https://doi.org/10.1002/psp4.12615

Rajput AJ, Aldibani HKA, Rostami-Hodjegan A (2023) In-depth analysis of patterns in selection of different physiologically based pharmacokinetic modeling tools: part I - applications and rationale behind the use of open source-code software. Biopharm Drug Dispos 44(3):274–285. https://doi.org/10.1002/bdd.2357

Article  CAS  PubMed  Google Scholar 

Aldibani HKA, Rajput AJ, Rostami-Hodjegan A (2023) In‐depth analysis of patterns in selection of different physiologically‐based pharmacokinetic modeling tools: part II—assessment of model reusability and comparison between open and non‐open source‐code software. Biopharm Drug Dispos 44(4):292–300

Comments (0)

No login
gif