Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59
Article CAS PubMed Google Scholar
Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26(9):1324–1337
Article CAS PubMed PubMed Central Google Scholar
Anderson MA, Huang D, Roberts A (2014) Targeting BCL2 for the treatment of lymphoid malignancies. Semin Hematol 51(3):219–227
Article CAS PubMed Google Scholar
Martin L-A, Dowsett M (2013) Bcl-2: a new therapeutic target in Estrogen Receptor-Positive breast cancer?? Cancer Cell 24(1):7–9
Article CAS PubMed Google Scholar
Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681
Article CAS PubMed Google Scholar
Roberts A, Huang D (2017) Targeting BCL2 with BH3 mimetics: basic science and clinical application of venetoclax in chronic lymphocytic leukemia and related B cell malignancies. Clin Pharmacol Ther 101(1):89–98
Article CAS PubMed Google Scholar
Wendt MD, Shen W, Kunzer A, McClellan WJ, Bruncko M, Oost TK, Ding H, Joseph MK, Zhang H, Nimmer PM, Ng S-C, Shoemaker AR, Petros AM, Oleksijew A, Marsh K, Bauch J, Oltersdorf T, Belli BA, Martineau D, Fesik SW, Rosenberg SH, Elmore SW (2006) Discovery and structure – activity relationship of antagonists of B-cell lymphoma 2 family proteins with chemopotentiation activity in vitro and in vivo. J Med Chem 49(3):1165–1181
Article CAS PubMed Google Scholar
Ploumaki I, Triantafyllou E, Koumprentziotis IA, Karampinos K, Drougkas K, Karavolias I, Trontzas I, Kotteas EA (2023) Bcl-2 pathway inhibition in solid tumors: a review of clinical trials. Clin Transl Oncol 25(6):1554–1578
Article CAS PubMed PubMed Central Google Scholar
Lasica M, Anderson MA (2021) Review of venetoclax in CLL, AML and multiple myeloma. J Pers Med 11(6):463. https://doi.org/10.3390/jpm11060463
Article PubMed PubMed Central Google Scholar
Stilgenbauer S, Eichhorst B, Schetelig J, Coutre S, Seymour JF, Munir T, Puvvada SD, Wendtner CM, Roberts AW, Jurczak W, Mulligan SP, Bottcher S, Mobasher M, Zhu M, Desai M, Chyla B, Verdugo M, Enschede SH, Cerri E, Humerickhouse R, Gordon G, Hallek M, Wierda WG (2016) Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol 17(6):768–778
Article CAS PubMed Google Scholar
Jones JA, Mato AR, Wierda WG, Davids MS, Choi M, Cheson BD, Furman RR, Lamanna N, Barr PM, Zhou L, Chyla B, Salem AH, Verdugo M, Humerickhouse RA, Potluri J, Coutre S, Woyach J, Byrd JC (2018) Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol 19(1):65–75
Article CAS PubMed Google Scholar
Coutre S, Choi M, Furman RR, Eradat H, Heffner L, Jones JA, Chyla B, Zhou L, Agarwal S, Waskiewicz T, Verdugo M, Humerickhouse RA, Potluri J, Wierda WG, Davids MS (2018) Venetoclax for patients with chronic lymphocytic leukemia who progressed during or after idelalisib therapy. Blood 131(15):1704–1711
Article CAS PubMed PubMed Central Google Scholar
Liu J, Chen Y, Yu L, Yang L (2022) Mechanisms of venetoclax resistance and solutions. Front Oncol 12:1005659
Article CAS PubMed PubMed Central Google Scholar
Birkinshaw RW, Gong JN, Luo CS, Lio D, White CA, Anderson MA, Blombery P, Lessene G, Majewski IJ, Thijssen R, Roberts AW, Huang DCS, Colman PM, Czabotar PE (2019) Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat Commun 10(1):2385
Article PubMed PubMed Central Google Scholar
Tausch E, Close W, Dolnik A, Bloehdorn J, Chyla B, Bullinger L, Döhner H, Mertens D, Stilgenbauer S (2019) Venetoclax resistance and acquired BCL2 mutations in chronic lymphocytic leukemia. Haematologica 104(9):e434–e437
Article CAS PubMed PubMed Central Google Scholar
Liu J, Li S, Wang Q, Feng Y, Xing H, Yang X, Guo Y, Guo Y, Sun H, Liu X, Yang S, Mei Z, Zhu Y, Cheng Z, Chen S, Xu M, Zhang W, Wan N, Wang J, Ma Y, Zhang S, Luan X, Xu A, Li L, Wang H, Yang X, Hong Y, Xue H, Yuan X, Hu N, Song X, Wang Z, Liu X, Wang L, Liu Y (2024) Sonrotoclax overcomes BCL2 G101V mutation-induced venetoclax resistance in preclinical models of hematologic malignancy. Blood 143(18):1825–1836
Article CAS PubMed PubMed Central Google Scholar
Guo Y, Xue H, Hu N, Liu Y, Sun H, Yu D, Qin L, Shi G, Wang F, Xin L, Sun W, Zhang F, Song X, Li S, Wei Q, Guo Y, Li Y, Liu X, Chen S, Zhang T, Wu Y, Su D, Zhu Y, Xu A, Xu H, Yang S, Zheng Z, Liu J, Yang X, Yuan X, Hong Y, Sun X, Guo Y, Zhou C, Liu X, Wang L, Wang Z (2024) Discovery of the clinical candidate Sonrotoclax (BGB-11417), a highly potent and selective inhibitor for both WT and G101V mutant Bcl-2. J Med Chem 67:7836-7858. https://doi.org/10.1021/acs.jmedchem.4c00027
Article PubMed PubMed Central Google Scholar
Tam CS, Anderson MA, Lasica M, Verner E, Opat SS, Ma S, Weinkove R, Cordoba R, Soumerai J, Ghia P, Leitch S, Hilger J, Fang Y, Simpson D, Guo H, Cheah CY (2023) Combination treatment with sonrotoclax (BGB-11417), a second-generation BCL2 inhibitor, and zanubrutinib, a Bruton tyrosine kinase (BTK) inhibitor, is well tolerated and achieves deep responses in patients with treatment-Naïve chronic lymphocytic leukemia/small lymphocytic lymphoma (TN-CLL/SLL): data from an ongoing phase 1/2 study. Blood 142(Supplement 1):327–327
Roffey SJ, Obach RS, Gedge JI, Smith DA (2007) What is the objective of the mass balance study? A retrospective analysis of data in animal and human excretion studies employing radiolabeled drugs. Drug Metab Rev 39(1):17–43
Article CAS PubMed Google Scholar
Penner N, Xu L, Prakash C (2012) Radiolabeled absorption, distribution, metabolism, and excretion studies in drug development: why, when, and how? Chem Res Toxicol 25(3):513–531
Article CAS PubMed Google Scholar
White RE, Evans DC, Hop CE, Moore DJ, Prakash C, Surapaneni S, Tse FL (2013) Radiolabeled mass-balance excretion and metabolism studies in laboratory animals: a commentary on why they are still necessary. Xenobiotica 43(2):219–225; discussion 226-7
Solon EG, Balani SK, Lee FW (2002) Whole-body autoradiography in drug discovery. Curr Drug Metab 3(5):451–462
Article CAS PubMed Google Scholar
Coelho LP, Kultima JR, Costea PI, Fournier C, Pan Y, Czarnecki-Maulden G, Hayward MR, Forslund SK, Schmidt TSB, Descombes P, Jackson JR, Li Q, Bork P (2018) Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome 6(1):72
Article PubMed PubMed Central Google Scholar
Deng P, Swanson KS (2015) Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges. Br J Nutr 113(S1):S6–S17
Article CAS PubMed Google Scholar
Hop CE, Wang Z, Chen Q, Kwei G (1998) Plasma-pooling methods to increase throughput for in vivo pharmacokinetic screening. J Pharm Sci 87(7):901–903
Article CAS PubMed Google Scholar
Hamilton RA, Garnett WR, Kline BJ (1981) Determination of mean valproic acid serum level by assay of a single pooled sample. Clin Pharmacol Ther 29(3):408–413
Article CAS PubMed Google Scholar
Marathe PH, Shyu WC, Humphreys WG (2004) The use of radiolabeled compounds for ADME studies in discovery and exploratory development. Curr Pharm Des 10(24):2991–3008
Article CAS PubMed Google Scholar
Isin EM, Elmore CS, Nilsson GN, Thompson RA, Weidolf L (2012) Use of radiolabeled compounds in drug metabolism and pharmacokinetic studies. Chem Res Toxicol 25(3):532–542
Comments (0)