BEA-CACE: branch-endpoint-aware double-DQN for coronary artery centerline extraction in CT angiography images

Leipsic J, Abbara S, Achenbach S, Cury R, Earls JP, Mancini GJ, Nieman K, Pontone G, Raff GL (2014) SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the society of cardiovascular computed tomography guidelines committee. J Cardiovasc Comput Tomogr 8(5):342–358

PubMed  Google Scholar 

Wolterink JM, van Hamersvelt RW, Viergever MA, Leiner T, Išgum I (2019) Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier. Med Image Anal 51:46–60

PubMed  Google Scholar 

Yang H, Chen J, Chi Y, Xie X, Hua X (2019) Discriminative coronary artery tracking via 3D CNN in cardiac CT angiography. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 468–476

Salahuddin Z, Lenga M, Nickisch H (2021) Multi-resolution 3D convolutional neural networks for automatic coronary centerline extraction in cardiac CT angiography scans. In: 2021 IEEE 18th international symposium on biomedical imaging (ISBI), IEEE, pp 91–95

Zhang P, Wang F, Zheng Y (2018) Deep reinforcement learning for vessel centerline tracing in multi-modality 3D volumes. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 755–763

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533

Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI conference on artificial intelligence, ACM

Yu F, Koltun V (2016) Multi-scale context aggregation by dilated convolutions. In: ICLR

Tatsugami F, Higaki T, Nakamura Y, Yu Z, Zhou J, Lu Y, Fujioka C, Kitagawa T, Kihara Y, Iida M, Awai K (2019) Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol 29(10):5322–5329

PubMed  Google Scholar 

Kigka VI, Rigas G, Sakellarios A, Siogkas P, Andrikos IO, Exarchos TP, Loggitsi D, Anagnostopoulos CD, Michalis LK, Neglia D, Pelosi G, Parodi O, Fotiadis DI (2018) 3D reconstruction of coronary arteries and atherosclerotic plaques based on computed tomography angiography images. Biomed Signal Process Control 40:286–294

Google Scholar 

Schaap M, Metz CT, van Walsum T, van der Giessen AG, Weustink AC, Mollet NR, Bauer C, Bogunović H, Castro C, Deng X, Dikici E, O’Donnell T, Frenay M, Friman O, Hernandez Hoyos M, Kitslaar PH, Krissian K, Kuehnel C, Luengo-Oroz MA, Orkisz M, Smedby O, Styner M, Szymczak A, Tek H, Wang C, Warfield SK, Zambal S, Zhang Y, Krestin GP, Niessen WJ (2009) Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med Image Anal 13(5):701–714

PubMed  Google Scholar 

Zhang Y, Luo G, Wang W, Wang K (2020) Branch-aware double DQN for centerline extraction in coronary CT angiography. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 35–44

Ming X, Li A, Wu J, Yan C, Ding W, Gong H, Zeng S, Liu Q (2013) Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. PLoS ONE 8(12):e84557

PubMed  PubMed Central  Google Scholar 

Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch. In: NIPS Workshop Autodiff Decision Program 1(1):1–12

Budoff MJ, Achenbach S, Blumenthal RS, Carr JJ, Goldin JG, Greenland P, Guerci AD, Lima JA, Rader DJ, Rubin GD, Shaw LJ, Wiegers SE (2006) Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on cardiovascular imaging and intervention, council on cardiovascular radiology and intervention, and committee on cardiac imaging, council on clinical cardiology. Circulation 114(16):1761–1791

PubMed  Google Scholar 

Izzo R, Steinman D, Manini S, Antiga L (2018) The vascular modeling toolkit: a python library for the analysis of tubular structures in medical images. J Open Sour Softw 3(25):745

Google Scholar 

Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 130–137

Comments (0)

No login
gif