Tsutsuura M, Moriyama H, Kojima N, et al. The monitoring of vancomycin: a systematic review and meta-analyses of area under the concentration-time curve-guided dosing and trough-guided dosing. BMC Infect Dis. 2021;21:153. https://doi.org/10.1186/s12879-021-05858-6.
Article CAS PubMed PubMed Central Google Scholar
Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health System Pharmacists. Clin Infect Dis. 2020;71:1361–4. https://doi.org/10.1093/cid/ciaa303.
Article CAS PubMed Google Scholar
Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461–70. https://doi.org/10.7326/0003-4819-130-6-199903160-00002.
Article CAS PubMed Google Scholar
Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41. https://doi.org/10.1159/000180580.
Article CAS PubMed Google Scholar
Oda K, Katanoda T, Hashiguchi Y, et al. Development and evaluation of a vancomycin dosing nomogram to achieve the target area under the concentration-time curve. A retrospective study. J Infect Chemother. 2020;26:444–50. https://doi.org/10.1016/j.jiac.2019.11.009.
Article CAS PubMed Google Scholar
Takigawa M, Tanaka H, Obara T, et al. Utility of the Berlin Initiative Study-1 equation for the prediction of serum vancomycin concentration in elderly patients aged 75 years and older. Pharmazie. 2022;77:76–80. https://doi.org/10.1691/ph.2022.1972.
Article CAS PubMed Google Scholar
Inker LA, Eneanya ND, Coresh J, et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med. 2021;385:1737–49. https://doi.org/10.1056/NEJMoa2102953.
Article CAS PubMed PubMed Central Google Scholar
Shafi T, Zhu X, Lirette ST, et al. Quantifying individual-level inaccuracy in glomerular filtration rate estimation: a cross-sectional study. Ann Intern Med. 2022;175:1073–82. https://doi.org/10.7326/M22-0610.
Ishigo T, Ibe Y, Fujii S, et al. Effect of renal clearance on vancomycin area under the concentration-time curve deviations in critically ill patients. J Infect Chemother. 2023;29:769–77. https://doi.org/10.1016/j.jiac.2023.04.018.
Article CAS PubMed Google Scholar
Haines RW, Fowler AJ, Liang K, et al. Comparison of cystatin C and creatinine in the assessment of measured kidney function during critical illness. Clin J Am Soc Nephrol. 2023;18:997–1005. https://doi.org/10.2215/CJN.0000000000000203.
Article PubMed PubMed Central Google Scholar
Teaford HR, Stevens RW, Rule AD, et al. Prediction of vancomycin levels using cystatin C in overweight and obese patients: a retrospective cohort study of hospitalized patients. Antimicrob Agents Chemother. 2020;65:e01487-e1520. https://doi.org/10.1128/AAC.01487-20.
Article PubMed PubMed Central Google Scholar
Frazee E, Rule AD, Lieske JC, et al. Cystatin C-guided vancomycin dosing in critically ill patients: a quality improvement project. Am J Kidney Dis. 2017;69:658–66. https://doi.org/10.1053/j.ajkd.2016.11.016.
Article CAS PubMed Google Scholar
Barreto EF, Rule AD, Murad MH, et al. Prediction of the renal elimination of drugs with cystatin C vs creatinine: a systematic review. Mayo Clin Proc. 2019;94:500–14. https://doi.org/10.1016/j.mayocp.2018.08.002.
Article CAS PubMed Google Scholar
Hanna PE, Wang Q, Strohbehn IA, et al. Medication-related adverse events and discordancies in cystatin C-based vs serum creatinine-based estimated glomerular filtration rate in patients with cancer. JAMA Netw Open. 2023;6:e2321715. https://doi.org/10.1001/jamanetworkopen.2023.21715.
Article PubMed PubMed Central Google Scholar
Costa e Silva VT, Gil LA Jr, Inker LA, et al. A prospective cross-sectional study estimated glomerular filtration rate from creatinine and cystatin C in adults with solid tumors. Kidney Int. 2022;101:607–14. https://doi.org/10.1016/j.kint.2021.12.010.
Article CAS PubMed Google Scholar
Delgado C, Baweja M, Crews DC, et al. A unifying approach for GFR estimation: recommendations of the NKF-ASN task force on reassessing the inclusion of race in diagnosing kidney disease. J Am Soc Nephrol. 2021;32:2994–3015. https://doi.org/10.1681/ASN.2021070988.
Article CAS PubMed PubMed Central Google Scholar
Oda K, Hashiguchi Y, Kimura T, et al. Performance of area under the concentration-time curve estimations of vancomycin with limited sampling by a newly developed web application. Pharm Res. 2021;38:637–46. https://doi.org/10.1007/s11095-021-03030-y.
Article CAS PubMed Google Scholar
Inker LA, Eckfeldt J, Levey AS, et al. Expressing the CKD-EPI (chronic kidney disease epidemiology collaboration) cystatin C equations for estimating GFR with standardized serum cystatin C values. Am J Kidney Dis. 2011;58:682–4. https://doi.org/10.1053/j.ajkd.2011.05.019.
Article PubMed PubMed Central Google Scholar
Stevens LA, Coresh J, Schmid CH, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis. 2008;51:395–406. https://doi.org/10.1053/j.ajkd.2007.11.018.
Article CAS PubMed PubMed Central Google Scholar
Delgado C, Baweja M, Crews DC, et al. A unifying approach for GFR estimation: recommendations of the NKF-ASN task force on reassessing the inclusion of race in diagnosing kidney disease. Am J Kidney Dis. 2022;79:268-288.e1. https://doi.org/10.1053/j.ajkd.2021.08.003.
Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92. https://doi.org/10.1053/j.ajkd.2008.12.034.
Article CAS PubMed Google Scholar
Horio M, Imai E, Yasuda Y, et al. GFR estimation using standardized serum cystatin C in Japan. Am J Kidney Dis. 2013;61:197–203. https://doi.org/10.1053/j.ajkd.2012.07.007.
Article CAS PubMed Google Scholar
Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition. 1989;5(5):303–11 (discussion 312–3).
Ibe Y, Ishigo T, Fujii S, et al. Simulation of vancomycin exposure using trough and peak levels achieves the target area under the steady-state concentration-time curve in ICU patients. Antibiotics (Basel). 2023;12:1113. https://doi.org/10.3390/antibiotics12071113.
Article CAS PubMed Google Scholar
Baxmann AC, Ahmed MS, Marques NC, et al. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol. 2008;3:348–54. https://doi.org/10.2215/CJN.02870707.
Article CAS PubMed PubMed Central Google Scholar
Chew-Harris JS, Florkowski CM, George PM, et al. The relative effects of fat versus muscle mass on cystatin C and estimates of renal function in healthy young men. Ann Clin Biochem. 2013;50:39–46. https://doi.org/10.1258/acb.2012.011241.
Article CAS PubMed Google Scholar
Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038–47. https://doi.org/10.1001/jama.298.17.2038.
Article CAS PubMed Google Scholar
Stevens LA, Li S, Wang C, et al. Prevalence of CKD and comorbid illness in elderly patients in the United States: results from the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis. 2010;55(Suppl 2):S23-33.
Comments (0)