6-Hydroxy flavone rescue ethanol-induced apoptotic neurodegeneration via activation of p-Akt signaling pathway in the developing mice brain

1. Mattioli AV, Sciomer S, Cocchi C, Maffei S, Gallina S. Quarantine during COVID-19 Outbreak: Changes in Diet and Physical Activity Increase the Risk of Cardiovascular Disease. Nutr Metab Cardiovasc Dis 2020;30(9):1409-17. https://doi.org/10.1016/j.numecd.2020.05.020

2. Spagnuolo C, Moccia S, Russo GL. Anti-Inflammatory Effects of Flavonoids in Neurodegenerative Disorders. Eur J Med Chem 2018;153:105-15. https://doi.org/10.1016/j.ejmech.2017.09.001

3. Mitoma H, Manto M, Shaikh AG. Mechanisms of Ethanol-Induced Cerebellar Ataxia: Underpinnings of Neuronal Death in the Cerebellum. Int J Environ Res Public Health 2021;18(16):8678. https://doi.org/10.3390/ijerph18168678

4. Pascual M, Montesinos J, Montagud-Romero S, Forteza J, Rodríguez-Arias M, Miñarro J, et al. TLR4 Response Mediates Ethanol-Induced Neurodevelopment Alterations in a Model of Fetal Alcohol Spectrum Disorders. J Neuroinflammation 2017;14(1):1-15. https://doi.org/10.1186/s12974-017-0918-2

5. Aguilar LS. Morphometric Analysis of Subcortical Structures in Adults with Fetal Alcohol Spectrum Disorders. PhD Thesis, San Diego State University, 2023. Accessed on: March 03, 2024. Available from URL: https://35.160.219.228/do/4361dbfd-bc03-4507-8352-a230e29c9856

6. Ieraci A, Herrera DG. Nicotinamide Inhibits Ethanol-Induced Caspase-3 and PARP-1 over-Activation and Subsequent Neurodegeneration in the Developing Mouse Cerebellum. Cerebellum 2018;17(3):326-35. https://doi.org/10.1007/s12311-017-0916-z

7. Jyotirmayee B, Mahalik G. A Review on Selected Pharmacological Activities of Curcuma Longa L. Int J Food Prop 2022;25(1):1377-98. https://doi.org/10.1080/10942912.2022.2082464

8. Elessawy FM, Hughes J, Khazaei H, Vandenberg A, El-Aneed A, Purves RW. A Comparative Metabolomics Investigation of Flavonoid Variation in Faba Bean Flowers. Metabolomics 2023;19(6):52. https://doi.org/10.1007/s11306-023-02014-w

9. Rakha A, Umar N, Rabail R, Butt MS, Kieliszek M, Hassoun A, et al. Anti-Inflammatory and Anti-Allergic Potential of Dietary Flavonoids: A Review. Biomed Pharmacother 2022;156:113945. https://doi.org/10.1016/j.biopha.2022.113945

10. Kapoor B, Gulati M, Gupta R, Singh SK, Gupta M, Nabi A, et al. A Review on Plant Flavonoids as Potential Anticancer Agents. Curr Org Chem 2021;25(6):737-47. https://doi.org/10.2174/1385272824999201126214150

11. Calis Z, Mogulkoc R, Baltaci AK. The Roles of Flavonols/Flavonoids in Neurodegeneration and Neuroinflammation. Mini Rev Med Chem 2020;20(15):1475-88. https://doi.org/10.2174/1389557519666190617150051

12. Suresh S, Deshmukh AS, Praharaj SK. Efficacy of Covert Sensitization for a Patient with Alcohol Use Disorder with Memory Impairment: A Case Report. J Addict Dis 2022;1-7. https://doi.org/10.1080/10550887.2022.2108363

13. Shah SA, Khan M, Jo M-H, Jo MG, Amin FU, Kim MO. Melatonin Stimulates the SIRT 1/Nrf2 Signaling Pathway Counteracting Lipopolysaccharide (LPS)-Induced Oxidative Stress to Rescue Postnatal Rat Brain. CNS Neurosci Ther 2017;23(1):33-44. https://doi.org/10.1111/cns.12588

14. Hou X, Du J, Zhang J, Du L, Fang H, Li M. How to Improve Docking Accuracy of AutoDock4. 2: A Case Study Using Different Electrostatic Potentials. J Chem Inf Model 2013;53(1):188-200. https://doi.org/10.1021/ci300417y

15. Fakih TM, Dewi ML. In Silico Identification of Characteristics Spike Glycoprotein of SARS-CoV-2 in the Development Novel Candidates for COVID-19 Infectious Diseases. J Biomed Transl Res 2020;6(2):48-52. https://doi.org/10.14710/jbtr.v6i2.7590

16. Diteepeng T, Del Monte F, Luciani M. The Long and Winding Road to Target Protein Misfolding in Cardiovascular Diseases. Eur J Clin Invest 2021;51(5):e13504. https://doi.org/10.1111/eci.13504

17. Duan Q, Wang G, Wang M, Chen C, Zhang M, Liu M, et al. LncRNA RP6-65G23. 1 Accelerates Proliferation and Inhibits Apoptosis via p-ERK1/2/p-AKT Signaling Pathway on Keratinocytes. J Cell Biochem 2020;121(11):4580-9. https://doi.org/10.1002/jcb.29685

18. Farooq U, Khan T, Shah SA, Hossain MS, Ali Y, Ullah R, et al. Isolation, Characterization and Neuroprotective Activity of Folecitin: An in Vivo Study. Life 2021;11(8):825. https://doi.org/10.3390/life11080825

19. Zhang Y, Zhang XX, Yuan RY, Ren T, Shao ZY, Wang HF, et al. Cordycepin Induces Apoptosis in Human Pancreatic Cancer Cells via the Mitochondrial-Mediated Intrinsic Pathway and Suppresses Tumor Growth in Vivo. OncoTargets Ther 2018;2018:4479-90. https://doi.org/10.2147/OTT.S164670

20. Lee W, Han EJ, Oh S-J, Shin E-J, Han H-J, Jung K et al. An Aqueous Extract of Octopus Ocellatus Meat Protects Hepatocytes Against H2O2-Induced Oxidative Stress via the Regulation of Bcl-2/Bax Signaling. Adv Exp Med Biol 2019:1155;597-610. https://doi.org/10.1007/978-981-13-8023-5_54

21. Li X, Liu Y, Liu X, Du J, Bhawal UK, Xu J, et al. Advances in the Therapeutic Effects of Apoptotic Bodies on Systemic Diseases. Int J Mol Sci 2022;23(15):8202. https://doi.org/10.3390/ijms23158202

22. Ieraci A, Herrera DG. Nicotinamide Inhibits Ethanol-Induced Caspase-3 and PARP-1 over-Activation and Subsequent Neurodegeneration in the Developing Mouse Cerebellum. Cerebellum 2018;17(3):326-35. https://doi.org/10.1007/s12311-017-0916-z

23. Hatziagapiou K, Kakouri E, Lambrou GI, Bethanis K, Tarantilis PA. Antioxidant Properties of Crocus Sativus L. and Its Constituents and Relevance to Neurodegenerative Diseases; Focus on Alzheimer’s and Parkinson’s Disease. Curr Neuropharmacol 2019;17(4):377-402. https://doi.org/10.2174/1570159X16666180321095705

24. Xu S-J, Wang X, Wang T-Y, Lin Z-Z, Hu Y-J, Huang Z-L, et al. Flavonoids from Rosa Roxburghii Tratt Prevent Reactive Oxygen Species-Mediated DNA Damage in Thymus Cells Both Combined with and without PARP-1 Expression after Exposure to Radiation in Vivo. Aging 2020;12(16):16368. https://doi.org/10.18632/aging.103688

25. Almeida L, Andreu-Fernández V, Navarro-Tapia E, Aras-López R, Serra-Delgado M, Martínez L, et al. Murine Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview. Front Pediatr 2020;8:359. https://doi.org/10.3389/fped.2020.00359

26. Walters JL, Paule MG. Review of Preclinical Studies on Pediatric General Anesthesia-Induced Developmental Neurotoxicity. Neurotoxicol Teratol 2017;60:2-23. https://doi.org/10.3389/fped.2020.00359

27. Gil-Mohapel J, Bianco CD, Cesconetto PA, Zamoner A, Brocardo PS. Ethanol Exposure during Development, and Brain Oxidative Stress. In Neuroscience of Alcohol; Elsevier, 2019; pp: 493-503. https://doi.org/10.1016/B978-0-12-813125-1.00051-9

Comments (0)

No login
gif