Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2016;19:771–83.
Article CAS PubMed PubMed Central Google Scholar
Jansson D, Rustenhoven J, Feng S, Hurley D, Oldfield RL, Bergin PS, Mee EW, Faull RL, Dragunow M. A role for human brain pericytes in neuroinflammation. J Neuroinflammation. 2014;11:104.
Article PubMed PubMed Central Google Scholar
Rustenhoven J, Jansson D, Smyth LC, Dragunow M. Brain pericytes as mediators of neuroinflammation. Trends Pharmacol Sci. 2017;38:291–304.
Article CAS PubMed Google Scholar
Winkler EA, Bell RD, Zlokovic B. V. Central nervous system pericytes in health and disease. Nat Neurosci. 2011;14:1398–405.
Article CAS PubMed PubMed Central Google Scholar
Knox EG, Aburto MR, Clarke G, Cryan JF, O’Driscoll CM. The blood-brain barrier in aging and neurodegeneration. Mol Psychiatry. 2022;27:2659–73.
Article CAS PubMed PubMed Central Google Scholar
Török O, Schreiner B, Schaffenrath J, Tsai H-C, Maheshwari U, Stifter SA, Welsh C, Amorim A, Sridhar S, Utz SG, Mildenberger W, Nassiri S, Delorenzi M, Aguzzi A, Han MH, Greter M, Becher B, Keller A. Pericytes regulate vascular immune homeostasis in the CNS. Proc. Natl. Acad. Sci. U.S.A. 118, e2016587118 (2021).
Duan L, Zhang X-D, Miao W-Y, Sun Y-J, Xiong G, Wu Q, Li G, Yang P, Yu H, Li H, Wang Y, Zhang M, Hu L-Y, Tong X, Zhou W-H, Yu X. PDGFRβ Cells Rapidly Relay Inflammatory Signal from the Circulatory System to Neurons via Chemokine CCL2. Neuron 100, 183–200.e8 (2018).
Kovac A, Erickson MA, Banks WA. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation. 2011;8:139.
Article CAS PubMed PubMed Central Google Scholar
Christensen LB, Woods TA, Carmody AB, Caughey B, Peterson KE. Age-related differences in neuroinflammatory responses associated with a distinct profile of regulatory markers on neonatal microglia. J Neuroinflammation. 2014;11:70.
Article PubMed PubMed Central Google Scholar
PrabhuDas M, Adkins B, Gans H, King C, Levy O, Ramilo O. Siegrist, C.-A. Challenges in infant immunity: implications for responses to infection and vaccines. Nat Immunol. 2011;12:189–94.
Article CAS PubMed Google Scholar
Salminen A, Kaarniranta K, Kauppinen A. Tissue fibroblasts are versatile immune regulators: an evaluation of their impact on the aging process. Ageing Res Rev. 2024;97:102296.
Article CAS PubMed Google Scholar
Frasca D, Blomberg BB. Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology. 2016;17:7–19.
Article CAS PubMed Google Scholar
Ladomersky E, et al. Advanced age increases immunosuppression in the brain and decreases immunotherapeutic efficacy in subjects with glioblastoma. Clin Cancer Res. 2020;26:5232–45.
Article CAS PubMed PubMed Central Google Scholar
Schneemann M, Schoeden G. Macrophage biology and immunology: man is not a mouse. J Leukoc Biol. 2007;81:579–579.
Article CAS PubMed Google Scholar
Vanlandewijck M, He L, Mäe MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Laviña B, Gouveia L, Sun Y, Raschperger E, Räsänen M, Zarb Y, Mochizuki N, Keller A, Lendahl U. Betsholtz, C. A molecular atlas of cell types and zonation in the brain vasculature. Nature. 2018;554:475–80.
Article CAS PubMed Google Scholar
Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–37.
Underly RG, Shih AY, Rapid. Nitric oxide Synthesis-Dependent activation of MMP-9 at pericyte Somata during capillary ischemia in vivo. Front Physiol. 2021;11:619230.
Article PubMed PubMed Central Google Scholar
Rana A, Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflammation. 2018;15:144.
Comments (0)