Takahashi G., Gurumurthy C.B., Wada K., Miura H., Sato M., Ohtsuka M. 2015. GONAD: Genome-editing via oviductal nucleic acids delivery system: A novel microinjection independent genome engineering method in mice. Sci. Rep. 5, 11406. https://doi.org/10.1038/srep11406
Article PubMed PubMed Central Google Scholar
Ohtsuka M., Sato M., Miura H., Takabayashi S., Matsuyama M., Koyano T., Arifin N., Nakamura S., Wada K., Gurumurthy C.B. 2018. I-GONAD: A robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol. 19, 25. https://doi.org/10.1186/s13059-018-1400-x
Article CAS PubMed PubMed Central Google Scholar
Sato M., Nakamura S., Inada E., Takabayashi S. 2022. Recent advances in the production of genome-edited rats. Int. J. Mol. Sci. 23 (5), 2548. https://doi.org/10.3390/ijms23052548
Article CAS PubMed PubMed Central Google Scholar
Hirose M., Tomishima T., Ogura A. 2023. Editing the genome of the golden hamster (Mesocricetus auratus). Methods Mol. Biol. 2637, 247–254. https://doi.org/10.1007/978-1-0716-3016-7_19
Article CAS PubMed Google Scholar
Namba M., Kobayashi T., Koyano T., Kohno M., Ohtsuka M., Matsuyama M. 2021. GONAD: A new method for germline genome editing in mice and rats. Dev. Growth. Differ. 63 (8), 439–447. https://doi.org/10.1111/dgd.12746
Article CAS PubMed PubMed Central Google Scholar
Kobayashi Y., Aoshima T., Ito R., Shinmura R., Ohtsuka M., Akasaka E., Sato M., Takabayashi S. 2020. Modification of i-GONAD suitable for production of genome-edited C57BL/6 inbred mouse strain. Cells. 9 (4), 957. https://doi.org/10.3390/cells9040957
Article CAS PubMed PubMed Central Google Scholar
Shang R., Zhang H., Bi P. 2021. Generation of mouse conditional knockout alleles in one step using the i-GONAD method. Gen. Res. 31 (1), 121–130. https://doi.org/10.1101/gr.265439.120
Sato M., Nakamura A., Sekiguchi M., Matsuwaki T., Miura H., Gurumurthy C.B., Kakuta S., Ohtsuka M. 2023. Improved genome editing via oviductal nucleic acids delivery (i-GONAD): Protocol steps and additional notes. Methods Mol. Biol. 2631, 325–340. https://doi.org/10.1007/978-1-0716-2990-1_14
Article CAS PubMed Google Scholar
Melo-Silva C.R., Knudson C.J., Tang L., Kafle S., Springer L.E., Choi J., Snyder C.M., Wang Y., Kim S.V., Sigal L.J. 2023. Multiple and consecutive genome editing using i-GONAD and breeding enrichment facilitates the production of genetically modified mice. Cells. 12 (9), 1343. https://doi.org/10.3390/cells12091343
Article CAS PubMed PubMed Central Google Scholar
Gurumurthy C.B., Sato M., Nakamura A., Inui M., Kawano N., Islam M.A., Ogiwara S., Takabayashi S., Matsuyama M., Nakagawa S., Miura H., Ohtsuka M. 2019. Creation of CRISPR-based germline-genome-engineered mice without ex vivo handling of zygotes by i-GONAD. Nat. Protoc. 14 (8), 2452–2482. https://doi.org/10.1038/s41596-019-0187-x
Article CAS PubMed Google Scholar
Garcia-Frigola C., Carreres M.I., Vegar C., Herrera E. 2007. Gene delivery into mouse retinal ganglion cells by in utero electroporation. BMC Dev. Biol. 7, 103. https://doi.org/10.1186/1471-213X-7-103
Article CAS PubMed PubMed Central Google Scholar
Shinmyo Y., Tanaka S., Tsunoda S., Hosomichi K., Tajima A., Kawasaki H. 2016. CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation. Sci. Rep. 6, 20611. https://doi.org/10.1038/srep20611
Article CAS PubMed PubMed Central Google Scholar
Book Reviews. 2002. J. Vet. Med. Educ. 29, 245–246. https://doi.org/10.3138/jvme.29.4.245
Cagle L.A., Franzi L.M., Epstein S.E., Kass P.H., Last J.A., Kenyon N.J. 2017. Injectable anesthesia for mice: Combined effects of dexmedetomidine, tiletamine-zolazepam, and butorphanol. Anesthesiol. Res. Pract. 2017, 9161040. https://doi.org/10.1155/2017/9161040
Limprasutr V., Sharp P., Jampachaisri K., Pacharinsak C., Durongphongtorn S. 2021. Tiletamine/zolazepam and dexmedetomidine with tramadol provide effective general anesthesia in rats. Animal Model Exp. Med. 4 (1), 40–46. https://doi.org/10.1002/ame2.12143
Article CAS PubMed PubMed Central Google Scholar
Cohen J. 2016. “Any idiot can do it.” Genome editor CRISPR could put mutant mice in everyone’s reach. Science. https://doi.org/10.1126/science.aal0334
Modzelewski A.J., Chen S., Willis B.J., Lloyd K.C.K., Wood J.A., He L. 2018. Efficient mouse genome engineering by CRISPR-EZ technology. Nat. Protoc. 13 (6), 1253–1274. https://doi.org/10.1038/nprot.2018.012
Article CAS PubMed PubMed Central Google Scholar
Imai Y., Tanave A., Matsuyama M., Koide T. 2022. Efficient genome editing in wild strains of mice using the i-GONAD method. Sci. Rep. 12 (1), 13821. https://doi.org/10.1038/s41598-022-17776-x
Article CAS PubMed PubMed Central Google Scholar
Weber E.M., Algers B., Würbel H., Hultgren J., Olsson I.A.S. 2013. Influence of strain and parity on the risk of litter loss in laboratory mice. Reprod. Dom. Anim. 48 (2), 292–296. https://doi.org/10.1111/J.1439-0531.2012.02147.X
Carter D.B., Kennett M.J., Franklin C.L. 2002. Use of perphenazine to control cannibalism in DBA/1 mice. Comp. Med. 52 (5), 452–455. PMID: 12405639
Du Sert N.P., Hurst V., Ahluwalia A., Alam S., Avey M.T., Baker M., Browne W.J., Clark A., Cuthill I.C., Dirnagl U., Emerson M., Garner P., Holgate S.T., Howells D.W., Karp N.A., Lazic S.E., Lidster K., MacCallum C.J., Macleod M., Pearl E.J., Petersen O.H., Rawle F., Reynolds P., Rooney K., Sena E.S., Silberberg S.D., Steckler T., Würbel H. 2020. The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18 (7), e3000410. https://doi.org/10.1371/journal.pbio.300041
Comments (0)