Lotthammer J.M., Ginell G.M., Griffith D., Emenecker R.J., Holehouse A.S. 2024. Direct prediction of intrinsically disordered protein conformational properties from sequences. Nat. Methods. 21 (3), 465‒476. https://doi.org/10.1038/s41592-023-02159-5
Article CAS PubMed PubMed Central Google Scholar
Shrestha U.R., Smith J.C., Petridis L. 2021. Full structural ensembles of intrinsically disordered proteins from unbiased molecular dynamics simulations. Commun. Biol. 4 (1), 243.
Article CAS PubMed PubMed Central Google Scholar
Gong X., Zhang Y., Chen J. 2021. Advanced sampling methods for multiscale simulation of disordered proteins and dynamic interactions. Biomolecules. 11, 1416.
Article CAS PubMed PubMed Central Google Scholar
Hartman, A.M., Elgaher W.A.M., Hertrich N., Andrei S.A., Ottmann C., Hirsch A.K.H. 2020. Discovery of small-molecule stabilizers of 14-3-3γ protein–protein interactions via dynamic combinatorial chemistry. ACS Med. Chem. Lett. 11, 1041–1046.
Article CAS PubMed PubMed Central Google Scholar
Somsen B.A., Cossar P.J., Arkin M.R., Brunsveld L., Ottmann C. 2024. 14-3-3 protein–protein interactions: from mechanistic understanding to their small-molecule stabilization. Chembiochem. 25 (14), e202400214.
Article CAS PubMed Google Scholar
Liu J., Cao S., Ding G., Wang B., Li Y., Zhao Y., Shao Q., Feng J., Liu S., Qin L., Xiao Y. 2021. The role of 14-3-3 proteins in cell signalling pathways and virus infection. J. Cell Mol. Med. 25, 4173–4182.
Article CAS PubMed PubMed Central Google Scholar
Yang X., Lee W.H., Sobott F., Papagrigoriou E., Robinson C.V., Grossmann J.G., Sundström M., Doyle D.A., Elkins J.M. 2006. Structural basis for protein–protein interactions in the 14-3-3γ protein family. Proc. Natl. Acad. Sci. U. S. A. 103, 17237–17242.
Article CAS PubMed PubMed Central Google Scholar
Pitasse-Santos P., Hewitt-Richards I., Abeywickrama Wijewardana Sooriyaarachchi M.D., Doveston R.G. 2024. Harnessing the 14-3-3γ protein–protein interaction network. Curr. Opin. Struct. Biol. 86, 102822.
Article CAS PubMed Google Scholar
Falcicchio M., Ward J.A., Macip S., Doveston R.G. 2020. Regulation of p53 by the 14-3-3γ protein interaction network: New opportunities for drug discovery in cancer. Cell Death Discovery. 6 (1), 126.
Article CAS PubMed PubMed Central Google Scholar
Muradyan N., Arakelov V., Sargsyan A., Paronyan A., Arakelov G., Nazaryan K. 2024. Impact of mutations on the stability of SARS-CoV-2 nucleocapsid protein structure. Sci. Rep. 14 (1), 5870.
Article CAS PubMed PubMed Central Google Scholar
Cubuk J., Alston J.J., Incicco J.J., Singh S., Stuchell-Brereton M.D., Ward M.D., Zimmerman M.I., Vithani N., Griffith D., Wagoner J.A., Bowman G.R., Hall K.B., Soranno A., Holehouse A.S. 2021. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat. Commun. 12 (1), 1936.
Article CAS PubMed PubMed Central Google Scholar
Ni X., Han Y., Zhou R., Zhou Y., Lei J. 2023. Structural insights into ribonucleoprotein dissociation by nucleocapsid protein interacting with non-structural protein 3 in SARS-CoV-2. Commun. Biol. 6 (1), 193.
Article CAS PubMed PubMed Central Google Scholar
Tugaeva K.V., Hawkins D.E.D.P., Smith J.L.R., Bayfield O.W., Ker D.S., Sysoev A.A., Klychnikov O.I., Antson A.A., Sluchanko N.N. 2021. The mechanism of SARS-CoV-2 nucleocapsid protein recognition by the human 14-3-3γ proteins. J. Mol. Biol. 433, 166875.
Article CAS PubMed PubMed Central Google Scholar
Joerger A.C., Fersht A.R. 2008. Structural biology of the tumor suppressor p53. Annu. Rev. Biochem. 77, 557–582.
Article CAS PubMed Google Scholar
Rajagopalan S., Sade R.S., Townsley F.M., Fersht A.R. 2009. Mechanistic differences in the transcriptional activation of p53 by 14-3-3γ isoforms. Nucleic Acids Res. 38, 893–906.
Article PubMed PubMed Central Google Scholar
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D. 2021. Highly accurate protein structure prediction with AlphaFold. Nature. 596, 583–589.
Article CAS PubMed PubMed Central Google Scholar
Evans R., O’Neill M., Pritzel A., Antropova N., Senior A., Green T., Žídek A., Bates R., Blackwell S., Yim J., Ronneberger O., Bodenstein S., Zielinski M., Bridgland A., Potapenko A., Cowie A., Tunyasuvunakool K., Jain R., Clancy E., Kohli P., Jumper J., Hassabis D. 2021. Protein complex prediction with AlphaFold-Multimer. bioRxiv. https://doi.org/10.1101/2021.10.04.463034
Dokholyan N.V., Buldyrev S.V., Stanley H.E., Shakhnovich E.I. 1998. Discrete molecular dynamics studies of the folding of a protein-like model. Fold. Des. 3, 577–587.
Article CAS PubMed Google Scholar
Proctor E.A., Ding F., Dokholyan N.V. 2011. Discrete molecular dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 80–92.
Tubiana T., Carvaillo J.-C., Boulard Y., Bressanelli S. 2018. TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries. J. Chem. Inf. Model. 58, 2178–2182.
Article CAS PubMed Google Scholar
Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. 2020. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82.
Article PubMed PubMed Central Google Scholar
Proctor E.A., Dokholyan N.V. 2016. Applications of discrete molecular dynamics in biology and medicine. Curr. Opin. Struct. Biol. 37, 9–13.
Article CAS PubMed Google Scholar
Szöllősi D., Horváth T., Han K.H., Dokholyan N.V., Tompa P., Kalmár L., Hegedűs T. 2014. Discrete molecular dynamics can predict helical prestructured motifs in disordered proteins. PLoS One. 9, e95795
Article PubMed PubMed Central Google Scholar
Zamel J., Chen J., Zaer S., Harris P.D., Drori P., Lebendiker M., Kalisman N., Dokholyan N.V., Lerner E. 2023. Structural and dynamic insights into α-synuclein dimer conformations. Structure. 31, 411‒423.e6.
Article CAS PubMed Google Scholar
Ding F., Dokholyan N.V. 2006. Emergence of protein fold families through rational design. PLoS Comput. Biol-. 2, e85.
Article PubMed PubMed Central Google Scholar
Kasahara K., Terazawa H., Takahashi T., Higo J. 2019. Studies on molecular dynamics of intrinsically disordered proteins and their fuzzy complexes: a mini-review. Comput. Struct. Biotechnol. J. 17, 712–720.
Article CAS PubMed PubMed Central Google Scholar
Fatafta H., Samantray S., Sayyed-Ahmad A., Coskuner-Weber O., Strodel B. 2021. Molecular simulations of IDPs: from ensemble generation to IDP interactions leading to disorder-to-order transitions. Prog. Mol. Biol. Transl. Sci. 183, 135–185. https://doi.org/10.1016/bs.pmbts.2021.06.003
Article CAS PubMed Google Scholar
Tesei G., Trolle A.I., Jonsson N., Betz J., Knudsen F.E., Pesce F., Johansson K.E., Lindorff-Larsen K. 2024. Conformational ensembles of the human intrinsically disordered proteome. Nature. 626, 897–904.
Comments (0)