Mefford HC, Batshaw ML, Hoffman EP. Genomics, intellectual disability, and autism. N Engl J Med. 2012;366(8):733–43.
Article CAS PubMed PubMed Central Google Scholar
Krol A, Feng G. Windows of opportunity: timing in neurodevelopmental disorders. Curr Opin Neurobiol. 2018;48:59–63.
Article CAS PubMed Google Scholar
Yuen MD, Bookman M, Thiruvahindrapuram JLH, Patel B. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20(4):602–11.
Article CAS PubMed Central Google Scholar
Sahin M, Sur M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science. 2015;350(6263).
Contractor A, Ethell IM, Portera-Cailliau C. Cortical interneurons in autism. Nat Neurosci. 2021;24(12):1648–59.
Article CAS PubMed PubMed Central Google Scholar
Bonsi P, De Jaco A, Fasano L, Gubellini P. Postsynaptic autism spectrum disorder genes and synaptic dysfunction. Neurobiol Dis. 2022;162:105564.
Gamache TR, Araki Y, Huganir RL. Twenty years of syngap research: from synapses to cognition. J Neurosci. 2020;40(8):1596–605.
Article CAS PubMed PubMed Central Google Scholar
Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004;27(7):370–7.
Article CAS PubMed Google Scholar
Sidorov MS, Auerbach BD, Bear MF. Fragile X mental retardation protein and synaptic plasticity. Mol Brain. 2013;6:15.
Article CAS PubMed PubMed Central Google Scholar
Uchigashima M, Cheung A, Futai K. Neuroligin-3: A Circuit-Specific synapse organizer that shapes normal function and autism spectrum Disorder-Associated dysfunction. Front Mol Neurosci. 2021;14:749164.
Article CAS PubMed PubMed Central Google Scholar
Cao X, Tabuchi K. Functions of synapse adhesion molecules neurexin/neuroligins and neurodevelopmental disorders. Neurosci Res. 2017;116:3–9.
Article CAS PubMed Google Scholar
Craig AM, Kang Y. Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol. 2007;17(1):43–52.
Article CAS PubMed PubMed Central Google Scholar
Bonnycastle K, Davenport EC, Cousin MA. Presynaptic dysfunction in neurodevelopmental disorders: insights from the synaptic vesicle life cycle. J Neurochem. 2021;157(2):179–207.
Article CAS PubMed Google Scholar
Verhage M, Sørensen JB, SNAREopathies. Diversity in mechanisms and symptoms. Neuron. 2020;107(1):22–37.
Südhof TC. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron. 2013;80(3):675–90.
Chanaday NL, Cousin MA, Milosevic I, Watanabe S, Morgan JR. The synaptic vesicle cycle revisited: new insights into the modes and mechanisms. J Neurosci. 2019;39(42):8209–16.
Article CAS PubMed PubMed Central Google Scholar
Kononenko NL, Haucke V. Molecular mechanisms of presynaptic membrane retrieval and synaptic vesicle reformation. Neuron. 2015;85(3):484–96.
Article CAS PubMed Google Scholar
Kononenko NL, Puchkov D, Classen GA, Walter AM, Pechstein A, Sawade L, et al. Clathrin/AP-2 mediate synaptic vesicle reformation from endosome-like vacuoles but are not essential for membrane retrieval at central synapses. Neuron. 2014;82(5):981–8.
Article CAS PubMed Google Scholar
Watanabe S, Trimbuch T, Camacho-Perez M, Rost BR, Brokowski B, Sohl-Kielczynski B, et al. Clathrin regenerates synaptic vesicles from endosomes. Nature. 2014;515(7526):228–33.
Article CAS PubMed PubMed Central Google Scholar
Cousin MA. Integration of synaptic vesicle cargo retrieval with endocytosis at central nerve terminals. Front Cell Neurosci. 2017;11:234.
Article PubMed PubMed Central Google Scholar
Soykan T, Kaempf N, Sakaba T, Vollweiter D, Goerdeler F, Puchkov D, et al. Synaptic vesicle endocytosis occurs on multiple timescales and is mediated by Formin-Dependent actin assembly. Neuron. 2017;93(4):854–66. e4.
Article CAS PubMed Google Scholar
Clayton EL, Evans GJ, Cousin MA. Bulk synaptic vesicle endocytosis is rapidly triggered during strong stimulation. J Neurosci. 2008;28(26):6627–32.
Article CAS PubMed PubMed Central Google Scholar
Kokotos AC, Cousin MA. Synaptic vesicle generation from central nerve terminal endosomes. Traffic. 2015;16(3):229–40.
Article CAS PubMed Google Scholar
Bonnycastle K, Kind PC, Cousin MA. FMRP sustains presynaptic function via control of Activity-Dependent bulk endocytosis. J Neurosci. 2022;42(8):1618–28.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Bonnan A, Bony G, Ferezou I, Pietropaolo S, Ginger M, et al. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1(-/y) mice. Nat Neurosci. 2014;17(12):1701–9.
Article CAS PubMed Google Scholar
Booker SA, Domanski APF, Dando OR, Jackson AD, Isaac JTR, Hardingham GE, et al. Altered dendritic spine function and integration in a mouse model of fragile X syndrome. Nat Commun. 2019;10(1):4813.
Article PubMed PubMed Central Google Scholar
Das Sharma S, Pal R, Reddy BK, Selvaraj BT, Raj N, Samaga KK, et al. Cortical neurons derived from human pluripotent stem cells lacking FMRP display altered spontaneous firing patterns. Mol Autism. 2020;11(1):52.
Article CAS PubMed PubMed Central Google Scholar
Anstey NJ, Kapgal V, Tiwari S, Watson TC, Toft AKH, Dando OR, et al. Imbalance of flight-freeze responses and their cellular correlates in the Nlgn3(-/y) rat model of autism. Mol Autism. 2022;13(1):34.
Article CAS PubMed PubMed Central Google Scholar
Mastro TL, Preza A, Basu S, Chattarji S, Till SM, Kind PC, Kennedy MB. A sex difference in the response of the rodent postsynaptic density to syngap haploinsufficiency. Elife. 2020;9:e52656.
Buller-Peralta I, Maicas-Royo J, Lu Z, Till SM, Wood ER, Kind PC, et al. Abnormal brain state distribution and network connectivity in a SYNGAP1 rat model. Brain Commun. 2022;4(6):fcac263.
Article PubMed PubMed Central Google Scholar
Katsanevaki D, Till SM, Buller-Peralta I, Nawaz MS, Louros SR, Kapgal V, et al. Key roles of C2/GAP domains in SYNGAP1-related pathophysiology. Cell Rep. 2024;43(9):114733.
Article CAS PubMed Google Scholar
Kight KE, Argue KJ, Bumgardner JG, Bardhi K, Waddell J, McCarthy MM. Social behavior in prepubertal neurexin 1α deficient rats: A model of neurodevelopmental disorders. Behav Neurosci. 2021;135(6):782–803.
Comments (0)