Huntingtin-interacting protein 1 in cancer progression: a path less explored

Hyun TS, Ross TS. HIP1: trafficking roles and regulation of tumorigenesis. Trends Mol Med. 2004;10(4):194–9. https://doi.org/10.1016/j.molmed.2004.02.003.

Article  CAS  PubMed  Google Scholar 

Legendre-Guillemin V, Metzler M, Charbonneau M, Gan L, Chopra V, Philie J, Hayden MR, McPherson PS. HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain. J Biol Chem. 2002;277(22):19897–904. https://doi.org/10.1074/jbc.M112310200.

Article  CAS  PubMed  Google Scholar 

Ames HM, Wang AA, Coughran A, Evaul K, Huang S, Graves CW, Soyombo AA, Ross TS. Huntingtin-interacting protein 1 phosphorylation by receptor tyrosine kinases. Mol Cell Biol. 2013;33(18):3580–93. https://doi.org/10.1128/MCB.00473-13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mills IG, Gaughan L, Robson C, Ross T, McCracken S, Kelly J, Neal DE. Huntingtin interacting protein 1 modulates the transcriptional activity of nuclear hormone receptors. J Cell Biol. 2005;170(2):191–200. https://doi.org/10.1083/jcb.200503106.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao DS, Hyun TS, Kumar PD, Mizukami IF, Rubin MA, Lucas PC, Sanda MG, Ross TS. Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival. J Clin Invest. 2002;110(3):351–60. https://doi.org/10.1172/JCI15529.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li D, Chen F, Ding J, Lin N, Li Z, Wang X. Knockdown of HIP1 expression promotes ligand-induced endocytosis of EGFR in HeLa cells. Oncol Rep. 2017;38(6):3387–91. https://doi.org/10.3892/or.2017.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu CY, Lin CH, Jan YH, Su CY, Yao YC, Cheng HC, Hsu TI, Wang PS, Su WP, Yang CJ, Huang MS, Calkins MJ, Hsiao M, Lu PJ. Huntingtin-interacting protein-1 is an early-stage prognostic biomarker of lung adenocarcinoma and suppresses metastasis via Akt-mediated epithelial-mesenchymal transition. Am J Respir Crit Care Med. 2016;193(8):869–80. https://doi.org/10.1164/rccm.201412-2226OC.

Article  CAS  PubMed  Google Scholar 

Ross TS, Bernard OA, Berger R, Gilliland DG. Fusion of Huntingtin interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood. 1998;91(12):4419–26.

Article  CAS  PubMed  Google Scholar 

Fang DD, Zhang B, Gu Q, Lira M, Xu Q, Sun H, Qian M, Sheng W, Ozeck M, Wang Z, Zhang C, Chen X, Chen KX, Li J, Chen SH, Christensen J, Mao M, Chan CC. HIP1-ALK, a novel ALK fusion variant that responds to crizotinib. J Thorac Oncol. 2014;9(3):285–94. https://doi.org/10.1097/JTO.0000000000000087.

Article  CAS  PubMed  Google Scholar 

Bradley SV, Oravecz-Wilson KI, Bougeard G, Mizukami I, Li L, Munaco AJ, Sreekumar A, Corradetti MN, Chinnaiyan AM, Sanda MG, Ross TS. Serum antibodies to huntingtin interacting protein-1: a new blood test for prostate cancer. Cancer Res. 2005;65(10):4126–33. https://doi.org/10.1158/0008-5472.CAN-04-4658.

Article  CAS  PubMed  Google Scholar 

Bradley SV, Holland EC, Liu GY, Thomas D, Hyun TS, Ross TS. Huntingtin interacting protein 1 is a novel brain tumor marker that associates with epidermal growth factor receptor. Cancer Res. 2007;67(8):3609–15. https://doi.org/10.1158/0008-5472.CAN-06-4803.

Article  CAS  PubMed  Google Scholar 

Ames HM, Bichakjian CK, Liu GY, Oravecz-Wilson KI, Fullen DR, Verhaegen ME, Johnson TM, Dlugosz AA, Ross TS. Huntingtin-interacting protein 1: a Merkel cell carcinoma marker that interacts with c-Kit. J Invest Dermatol. 2011;131(10):2113–20. https://doi.org/10.1038/jid.2011.171.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ou SH, Klempner SJ, Greenbowe JR, Azada M, Schrock AB, Ali SM, Ross JS, Stephens PJ, Miller VA. Identification of a novel HIP1-ALK fusion variant in Non-Small-Cell Lung Cancer (NSCLC) and discovery of ALK I1171 (I1171N/S) mutations in two ALK-rearranged NSCLC patients with resistance to Alectinib. J Thorac Oncol. 2014;9(12):1821–5. https://doi.org/10.1097/JTO.0000000000000368.

Article  CAS  PubMed  Google Scholar 

Li M, Tang Q, Chen S, Wang Y. A novel HIP1-ALK fusion variant in lung adenocarcinoma showing resistance to Crizotinib. Lung Cancer. 2021;151:98–100. https://doi.org/10.1016/j.lungcan.2020.11.014.

Article  CAS  PubMed  Google Scholar 

Legendre-Guillemin V, Metzler M, Lemaire JF, Philie J, Gan L, Hayden MR, McPherson PS. Huntingtin interacting protein 1 (HIP1) regulates clathrin assembly through direct binding to the regulatory region of the clathrin light chain. J Biol Chem. 2005;280(7):6101–8. https://doi.org/10.1074/jbc.M408430200.

Article  CAS  PubMed  Google Scholar 

Waelter S, Scherzinger E, Hasenbank R, Nordhoff E, Lurz R, Goehler H, Gauss C, Sathasivam K, Bates GP, Lehrach H, Wanker EE. The huntingtin interacting protein HIP1 is a clathrin and alpha-adaptin-binding protein involved in receptor-mediated endocytosis. Hum Mol Genet. 2001;10(17):1807–17. https://doi.org/10.1093/hmg/10.17.1807.

Article  CAS  PubMed  Google Scholar 

Shore ND, Moul JW, Pienta KJ, Czernin J, King MT, Freedland SJ. Biochemical recurrence in patients with prostate cancer after primary definitive therapy: treatment based on risk stratification. Prostate Cancer Prostatic Dis. 2024;27(2):192–201. https://doi.org/10.1038/s41391-023-00712-z.

Article  PubMed  Google Scholar 

Graves CW, Philips ST, Bradley SV, Oravecz-Wilson KI, Li L, Gauvin A, Ross TS. Use of a cryptic splice site for the expression of huntingtin interacting protein 1 in select normal and neoplastic tissues. Cancer Res. 2008;68(4):1064–73. https://doi.org/10.1158/0008-5472.CAN-07-5892.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lacombe L, Hovington H, Brisson H, Mehdi S, Beillevaire D, Émond JP, Wagner A, Villeneuve L, Simonyan D, Ouellet V, Barrès V, Latour M, Aprikian A, Bergeron A, Castonguay V, Couture F, Chevalier S, Brimo F, Fazli L, Fleshner N, Gleave M, Karakiewicz PI, Lattouf JB, Trudel D, van der Kwast T, Mes-Masson AM, Pouliot F, Fradet Y, Audet-Walsh E, Saad F, Guillemette C, Lévesque E. UGT2B28 accelerates prostate cancer progression through stabilization of the endocytic adaptor protein HIP1 regulating AR and EGFR pathways. Cancer Lett. 2023;553: 215994. https://doi.org/10.1016/j.canlet.2022.215994.

Article  CAS  PubMed  Google Scholar 

Shi Z, Chen J, Wumaner A, Li M, Liang C, Li M. A novel long non-coding RNA PCLN16 facilitates androgen receptor signaling in prostate cancer. Biochem Biophys Res Commun. 2021;537:78–84. https://doi.org/10.1016/j.bbrc.2020.12.043.

Article  CAS  PubMed  Google Scholar 

Rotundo F, Cominetti D, El Bezawy R, Percio S, Doldi V, Tortoreto M, Zuco V, Valdagni R, Zaffaroni N, Gandellini P. miR-1272 exerts tumor-suppressive functions in prostate cancer via HIP1 suppression. Cells. 2020;9(2):435. https://doi.org/10.3390/cells9020435.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Yu W, Cai Y, Ren C, Ittmann MM. Altered fibroblast growth factor receptor 4 stability promotes prostate cancer progression. Neoplasia. 2008;10(8):847–56. https://doi.org/10.1593/neo.08450.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao RB, Ramos-Montoya A, Scott H, Berry L, Reichelt S, MacArthur S, Russell R, Neal DE, Evergren E, Mills IG. HIP1 mediates oncogenic transformation and cancer progression through STAT3 signalling. bioRxiv (2020). https://doi.org/10.1101/2020.07.09.191734

Kanderi T, Munakomi S, Gupta V. Glioblastoma Multiforme. [Updated 2024 May 6]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-.

Erhart F, Hackl M, Hahne H, Buchroithner J, Meng C, Klingenbrunner S, Reitermaier R, Fischhuber K, Skalicky S, Berger W, Spiegl-Kreinecker S, Lötsch D, Ricken G, Kuster B, Wöhrer A, Widhalm G, Hainfellner J, Felzmann T, Dohnal AM, Marosi C, Visus C. Combined proteomics/miRNomics of dendritic cell immunotherapy-treated glioblastoma patients as a screening for survival-associated factors. NPJ Vaccines. 2020;5(1):5. https://doi.org/10.1038/s41541-019-0149-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu X, Xu B, Yang C, Wang W, Zhong D, Zhao Z, He L, Hu Y, Jiang L, Li J, Song L, Zhang W. Nucleolar and spindle associated protein 1 promotes the aggressiveness of astrocytoma by activating the Hedgehog signaling pathway. J Exp Clin Cancer Res. 2017;36(1):127. https://doi.org/10.1186/s13046-017-0597-y.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif