Borri F, Granaglia A. Pathology of triple negative breast cancer. Semin Cancer Biol. 2021;72:136–45. https://doi.org/10.1016/j.semcancer.2020.06.005.
Article CAS PubMed Google Scholar
Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer—Expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91–113. https://doi.org/10.1038/s41571-021-00565-2.
Article CAS PubMed Google Scholar
Guo B, Qu Y, Sun Y, Zhao S, Yuan J, Zhang P, Zhong Z, Meng F. Co-delivery of gemcitabine and paclitaxel plus NanoCpG empowers chemoimmunotherapy of postoperative “cold” triple-negative breast cancer. Bioact Mater. 2023;25:61–72. https://doi.org/10.1016/j.bioactmat.2023.01.014.
Article CAS PubMed PubMed Central Google Scholar
Minton K. Reservoirs of resistance. Nat Rev Immunol. 2022;22(6):336–7. https://doi.org/10.1038/s41577-022-00729-w.
Article CAS PubMed Google Scholar
Liu J, Bai Y, Li Y, Li X, Luo K. Reprogramming the immunosuppressive tumor microenvironment through nanomedicine: an immunometabolism perspective. EBioMedicine. 2024;107: 105301. https://doi.org/10.1016/j.ebiom.2024.105301.
Article CAS PubMed PubMed Central Google Scholar
Li H, Gong Q, Luo K. Biomarker-driven molecular imaging probes in radiotherapy. Theranostics. 2024;14(10):4127. https://doi.org/10.7150/thno.97768.
Article CAS PubMed PubMed Central Google Scholar
Winer EP, Lipatov O, Im S-A, Goncalves A, Muñoz-Couselo E, Lee KS, Schmid P, Tamura K, Testa L, Witzel I. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(4):499–511. https://doi.org/10.1016/S1470-2045(20)30754-3.
Article CAS PubMed Google Scholar
de Olza MO, Rodrigo BN, Zimmermann S, Coukos G. Turning up the heat on non-immunoreactive tumours: opportunities for clinical development. Lancet Oncol. 2020;21(9):e419–30. https://doi.org/10.1016/S1470-2045(20)30234-5.
Widjaya AS, Liu Y, Yang Y, Yin W, Liang J, Jiang Y. Tumor-permeable smart liposomes by modulating the tumor microenvironment to improve the chemotherapy. J Control Release. 2022;344:62–79. https://doi.org/10.1016/j.jconrel.2022.02.020.
Article CAS PubMed Google Scholar
Liu J, Ai X, Cabral H, Liu J, Huang Y, Mi P. Tumor hypoxia-activated combinatorial nanomedicine triggers systemic antitumor immunity to effectively eradicate advanced breast cancer. Biomaterials. 2021;273: 120847. https://doi.org/10.1016/j.biomaterials.2021.120847.
Article CAS PubMed Google Scholar
Li J, Zhao Q, Zhang N, Wu L, Wang Q, Li J, Pan Q, Pu Y, Luo K, Gu Z. Triune nanomodulator enables exhausted cytotoxic T lymphocyte rejuvenation for cancer epigenetic immunotherapy. ACS Nano. 2024;18(20):13226–40. https://doi.org/10.1021/acsnano.4c02337.
Article CAS PubMed Google Scholar
Ji T, Lang J, Ning B, Qi F, Wang H, Zhang Y, Zhao R, Yang X, Zhang L, Li W. Enhanced natural killer cell immunotherapy by rationally assembling Fc fragments of antibodies onto tumor membranes. Adv Mater. 2019;31(6):1804395. https://doi.org/10.1002/adma.201804395.
Zhou S, Huang Y, Chen Y, Liu S, Xu M, Jiang T, Song Q, Jiang G, Gu X, Gao X. Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy. Biomaterials. 2020;235: 119795. https://doi.org/10.1016/j.biomaterials.2020.119795.
Article CAS PubMed Google Scholar
Li YJ, Wu JY, Hu XB, Ding T, Tang T, Xiang DX. Biomimetic liposome with surface-bound elastase for enhanced tumor penetration and chemo-immumotherapy. Adv Healthc Mater. 2021;10(19):2100794. https://doi.org/10.1002/adhm.202100794.
Zhou M, Luo C, Zhou Z, Li L, Huang Y. Improving anti-PD-L1 therapy in triple negative breast cancer by polymer-enhanced immunogenic cell death and CXCR4 blockade. J Control Release. 2021;334:248–62. https://doi.org/10.1016/j.jconrel.2021.04.029.
Article CAS PubMed Google Scholar
Nel AE, Mei K-C, Liao Y-P, Liu X. Multifunctional lipid bilayer nanocarriers for cancer immunotherapy in heterogeneous tumor microenvironments, combining immunogenic cell death stimuli with immune modulatory drugs. ACS Nano. 2022;16(4):5184–232. https://doi.org/10.1021/acsnano.2c01252.
Article CAS PubMed PubMed Central Google Scholar
Ye Y, Xu C, Chen F, Liu Q, Cheng N. Targeting innate immunity in breast cancer therapy: a narrative review. Front Immunol. 2021;12:771201. https://doi.org/10.3389/fimmu.2021.771201.
Article CAS PubMed PubMed Central Google Scholar
Krieg AM. Development of TLR9 agonists for cancer therapy. J Clin Invest. 2007;117(5):1184–94. https://doi.org/10.1172/JCI31414.
Article CAS PubMed PubMed Central Google Scholar
Deng C, Zhang Q, Jia M, Zhao J, Sun X, Gong T, Zhang Z. Tumors and their microenvironment dual-targeting chemotherapy with local immune adjuvant therapy for effective antitumor immunity against breast cancer. Adv Sci. 2019;6(6):1801868. https://doi.org/10.1002/advs.201801868.
Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, Meng M, Fritz D, Vascotto F, Hefesha H. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534(7607):396–401. https://doi.org/10.1038/nature18300.
Article CAS PubMed Google Scholar
Deng B, Ma B, Ma Y, Cao P, Leng X, Huang P, Zhao Y, Ji T, Lu X, Liu L. Doxorubicin and CpG loaded liposomal spherical nucleic acid for enhanced Cancer treatment. J Nanobiotechnology. 2022;20(1):140. https://doi.org/10.1186/s12951-022-01353-5.
Article CAS PubMed PubMed Central Google Scholar
Xie L, Wang G, Sang W, Li J, Zhang Z, Li W, Yan J, Zhao Q, Dai Y. Phenolic immunogenic cell death nanoinducer for sensitizing tumor to PD-1 checkpoint blockade immunotherapy. Biomaterials. 2021;269:120638. https://doi.org/10.1016/j.biomaterials.2020.120638.
Article CAS PubMed Google Scholar
Yang W, Zhu G, Wang S, Yu G, Yang Z, Lin L, Zhou Z, Liu Y, Dai Y, Zhang F. In situ dendritic cell vaccine for effective cancer immunotherapy. ACS Nano. 2019;13(3):3083–94. https://doi.org/10.1021/acsnano.8b08346.
Article CAS PubMed Google Scholar
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Disco. 2019;18(3):175–96. https://doi.org/10.1038/s41573-018-0006-z.
Ahlawat J, Guillama Barroso G, Masoudi Asil S, Alvarado M, Armendariz I, Bernal J, Carabaza X, Chavez S, Cruz P, Escalante V. Nanocarriers as potential drug delivery candidates for overcoming the blood–brain barrier: challenges and possibilities. ACS Omega. 2020;5(22):12583–95. https://doi.org/10.1021/acsomega.0c01592.
Article CAS PubMed PubMed Central Google Scholar
Ji Y, Song S, Li X, Lv R, Wu L, Wang H, Cao M. Facile fabrication of nanocarriers with yolk-shell mesoporous silica nanoparticles for effective drug delivery. J Drug Deliv Sci Technol. 2021;63: 102531. https://doi.org/10.1016/j.jddst.2021.102531.
Ahmadi H, Heydari M, Abdouss M, Jamalpoor Z, Fathi-karkan S, Rahdar A, Pandey S. Metronidazole delivery strategies: optimizing cancer therapy through Novel approaches for enhanced delivery, cytotoxicity, and side effect reduction. Eur J Med Chem Rep. 2024. https://doi.org/10.1016/j.ejmcr.2024.100202.
Comments (0)