Innovative PEGylated chitosan nanocarriers for co-delivery of doxorubicin and CpG in breast cancer therapy: Preparation, characterization, and immunotherapeutic potential

Borri F, Granaglia A. Pathology of triple negative breast cancer. Semin Cancer Biol. 2021;72:136–45. https://doi.org/10.1016/j.semcancer.2020.06.005.

Article  CAS  PubMed  Google Scholar 

Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer—Expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91–113. https://doi.org/10.1038/s41571-021-00565-2.

Article  CAS  PubMed  Google Scholar 

Guo B, Qu Y, Sun Y, Zhao S, Yuan J, Zhang P, Zhong Z, Meng F. Co-delivery of gemcitabine and paclitaxel plus NanoCpG empowers chemoimmunotherapy of postoperative “cold” triple-negative breast cancer. Bioact Mater. 2023;25:61–72. https://doi.org/10.1016/j.bioactmat.2023.01.014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Minton K. Reservoirs of resistance. Nat Rev Immunol. 2022;22(6):336–7. https://doi.org/10.1038/s41577-022-00729-w.

Article  CAS  PubMed  Google Scholar 

Liu J, Bai Y, Li Y, Li X, Luo K. Reprogramming the immunosuppressive tumor microenvironment through nanomedicine: an immunometabolism perspective. EBioMedicine. 2024;107: 105301. https://doi.org/10.1016/j.ebiom.2024.105301.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li H, Gong Q, Luo K. Biomarker-driven molecular imaging probes in radiotherapy. Theranostics. 2024;14(10):4127. https://doi.org/10.7150/thno.97768.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winer EP, Lipatov O, Im S-A, Goncalves A, Muñoz-Couselo E, Lee KS, Schmid P, Tamura K, Testa L, Witzel I. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(4):499–511. https://doi.org/10.1016/S1470-2045(20)30754-3.

Article  CAS  PubMed  Google Scholar 

de Olza MO, Rodrigo BN, Zimmermann S, Coukos G. Turning up the heat on non-immunoreactive tumours: opportunities for clinical development. Lancet Oncol. 2020;21(9):e419–30. https://doi.org/10.1016/S1470-2045(20)30234-5.

Article  Google Scholar 

Widjaya AS, Liu Y, Yang Y, Yin W, Liang J, Jiang Y. Tumor-permeable smart liposomes by modulating the tumor microenvironment to improve the chemotherapy. J Control Release. 2022;344:62–79. https://doi.org/10.1016/j.jconrel.2022.02.020.

Article  CAS  PubMed  Google Scholar 

Liu J, Ai X, Cabral H, Liu J, Huang Y, Mi P. Tumor hypoxia-activated combinatorial nanomedicine triggers systemic antitumor immunity to effectively eradicate advanced breast cancer. Biomaterials. 2021;273: 120847. https://doi.org/10.1016/j.biomaterials.2021.120847.

Article  CAS  PubMed  Google Scholar 

Li J, Zhao Q, Zhang N, Wu L, Wang Q, Li J, Pan Q, Pu Y, Luo K, Gu Z. Triune nanomodulator enables exhausted cytotoxic T lymphocyte rejuvenation for cancer epigenetic immunotherapy. ACS Nano. 2024;18(20):13226–40. https://doi.org/10.1021/acsnano.4c02337.

Article  CAS  PubMed  Google Scholar 

Ji T, Lang J, Ning B, Qi F, Wang H, Zhang Y, Zhao R, Yang X, Zhang L, Li W. Enhanced natural killer cell immunotherapy by rationally assembling Fc fragments of antibodies onto tumor membranes. Adv Mater. 2019;31(6):1804395. https://doi.org/10.1002/adma.201804395.

Article  CAS  Google Scholar 

Zhou S, Huang Y, Chen Y, Liu S, Xu M, Jiang T, Song Q, Jiang G, Gu X, Gao X. Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy. Biomaterials. 2020;235: 119795. https://doi.org/10.1016/j.biomaterials.2020.119795.

Article  CAS  PubMed  Google Scholar 

Li YJ, Wu JY, Hu XB, Ding T, Tang T, Xiang DX. Biomimetic liposome with surface-bound elastase for enhanced tumor penetration and chemo-immumotherapy. Adv Healthc Mater. 2021;10(19):2100794. https://doi.org/10.1002/adhm.202100794.

Article  CAS  Google Scholar 

Zhou M, Luo C, Zhou Z, Li L, Huang Y. Improving anti-PD-L1 therapy in triple negative breast cancer by polymer-enhanced immunogenic cell death and CXCR4 blockade. J Control Release. 2021;334:248–62. https://doi.org/10.1016/j.jconrel.2021.04.029.

Article  CAS  PubMed  Google Scholar 

Nel AE, Mei K-C, Liao Y-P, Liu X. Multifunctional lipid bilayer nanocarriers for cancer immunotherapy in heterogeneous tumor microenvironments, combining immunogenic cell death stimuli with immune modulatory drugs. ACS Nano. 2022;16(4):5184–232. https://doi.org/10.1021/acsnano.2c01252.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye Y, Xu C, Chen F, Liu Q, Cheng N. Targeting innate immunity in breast cancer therapy: a narrative review. Front Immunol. 2021;12:771201. https://doi.org/10.3389/fimmu.2021.771201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krieg AM. Development of TLR9 agonists for cancer therapy. J Clin Invest. 2007;117(5):1184–94. https://doi.org/10.1172/JCI31414.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng C, Zhang Q, Jia M, Zhao J, Sun X, Gong T, Zhang Z. Tumors and their microenvironment dual-targeting chemotherapy with local immune adjuvant therapy for effective antitumor immunity against breast cancer. Adv Sci. 2019;6(6):1801868. https://doi.org/10.1002/advs.201801868.

Article  CAS  Google Scholar 

Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, Meng M, Fritz D, Vascotto F, Hefesha H. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534(7607):396–401. https://doi.org/10.1038/nature18300.

Article  CAS  PubMed  Google Scholar 

Deng B, Ma B, Ma Y, Cao P, Leng X, Huang P, Zhao Y, Ji T, Lu X, Liu L. Doxorubicin and CpG loaded liposomal spherical nucleic acid for enhanced Cancer treatment. J Nanobiotechnology. 2022;20(1):140. https://doi.org/10.1186/s12951-022-01353-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie L, Wang G, Sang W, Li J, Zhang Z, Li W, Yan J, Zhao Q, Dai Y. Phenolic immunogenic cell death nanoinducer for sensitizing tumor to PD-1 checkpoint blockade immunotherapy. Biomaterials. 2021;269:120638. https://doi.org/10.1016/j.biomaterials.2020.120638.

Article  CAS  PubMed  Google Scholar 

Yang W, Zhu G, Wang S, Yu G, Yang Z, Lin L, Zhou Z, Liu Y, Dai Y, Zhang F. In situ dendritic cell vaccine for effective cancer immunotherapy. ACS Nano. 2019;13(3):3083–94. https://doi.org/10.1021/acsnano.8b08346.

Article  CAS  PubMed  Google Scholar 

Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Disco. 2019;18(3):175–96. https://doi.org/10.1038/s41573-018-0006-z.

Article  CAS  Google Scholar 

Ahlawat J, Guillama Barroso G, Masoudi Asil S, Alvarado M, Armendariz I, Bernal J, Carabaza X, Chavez S, Cruz P, Escalante V. Nanocarriers as potential drug delivery candidates for overcoming the blood–brain barrier: challenges and possibilities. ACS Omega. 2020;5(22):12583–95. https://doi.org/10.1021/acsomega.0c01592.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji Y, Song S, Li X, Lv R, Wu L, Wang H, Cao M. Facile fabrication of nanocarriers with yolk-shell mesoporous silica nanoparticles for effective drug delivery. J Drug Deliv Sci Technol. 2021;63: 102531. https://doi.org/10.1016/j.jddst.2021.102531.

Article  CAS  Google Scholar 

Ahmadi H, Heydari M, Abdouss M, Jamalpoor Z, Fathi-karkan S, Rahdar A, Pandey S. Metronidazole delivery strategies: optimizing cancer therapy through Novel approaches for enhanced delivery, cytotoxicity, and side effect reduction. Eur J Med Chem Rep. 2024. https://doi.org/10.1016/j.ejmcr.2024.100202.

Article 

Comments (0)

No login
gif