Hoshikawa Y, Muramatsu M, Iida T, et al. Influence of the psoas major and thigh muscularity on 100-m times in junior sprinters. Med Sci Sports Exerc. 2006;38:2138–43. https://doi.org/10.1249/01.mss.0000233804.48691.45.
Kojic F, Ðurić S, Ranisavljev I, Stojiljkovic S, Ilic V. Quadriceps femoris cross-sectional area and specific leg strength: relationship between different muscles and squat variations. PeerJ. 2021;9: e12435. https://doi.org/10.7717/peerj.12435.
Article PubMed PubMed Central Google Scholar
Hirsch KR, Smith-Ryan AE, Trexler ET, Roelofs EJ. Body composition and muscle characteristics of division I track and field athletes. J Strength Cond Res. 2016;30:1231–8. https://doi.org/10.1519/JSC.0000000000001203.
Article PubMed PubMed Central Google Scholar
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Proceedings of the medical image computing and computer-assisted intervention (MICCAI) 18th international conference, Munich, Germany, October 5–9, 2015; Part III. Springer International Publishing; 2015. pp. 234–41.
Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE; 2017. pp. 2881–90.
Chen L C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the 2018 European conference on computer vision (ECCV), Munich, Germany. Springer International Publishing; 2018. pp. 801–18.
Kemnitz J, Baumgartner CF, Eckstein F, et al. Clinical evaluation of fully automated thigh muscle and adipose tissue segmentation using a U-Net deep learning architecture in context of osteoarthritic knee pain. MAGMA. 2020;33:483–93. https://doi.org/10.1007/s10334-019-00816-5.
Article CAS PubMed Google Scholar
Ding J, Cao P, Chang HC, Gao Y, Chan SHS, Vardhanabhuti V. Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat–water decomposition MRI. Insights Imaging. 2020;11:128. https://doi.org/10.1186/s13244-020-00946-8.
Article PubMed PubMed Central Google Scholar
Kihara S, Koike Y, Takegawa H, et al. Clinical target volume segmentation based on gross tumor volume using deep learning for head and neck cancer treatment. Med Dosim. 2023;48:20–4. https://doi.org/10.1016/j.meddos.2022.09.004.
Yang R, Yan C, Lu S, et al. Tracking cancer lesions on surgical samples of gastric cancer by artificial intelligent algorithms. J Cancer. 2021;12:6473–83. https://doi.org/10.7150/jca.63879.
Article PubMed PubMed Central Google Scholar
Yan L, Liu D, Xiang Q, et al. PSP net-based automatic segmentation network model for prostate magnetic resonance imaging. Comput Methods Programs Biomed. 2021;207: 106211. https://doi.org/10.1016/j.cmpb.2021.106211.
Zhou K, Li W, Zhao D. Deep learning-based breast region extraction of mammographic images combining pre-processing methods and semantic segmentation supported by Deeplab v3+. Technol Health Care. 2022;30:173–90. https://doi.org/10.3233/THC-228017.
Article PubMed PubMed Central Google Scholar
Wang J, Liu X. Medical image recognition and segmentation of pathological slices of gastric cancer based on Deeplab v3+ neural network. Comput Methods Programs Biomed. 2021;207: 106210. https://doi.org/10.1016/j.cmpb.2021.106210.
Lin YC, Lin G, Pandey S, et al. Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning. Eur Radiol. 2023;33:6548–56. https://doi.org/10.1007/s00330-023-09827-2.
Article PubMed PubMed Central Google Scholar
Kato T, Tomioka T, Yamashita T, Yamamoto H, Sugajima Y, Ohnishi N. Nordic walking increases distal radius bone mineral content in young women. J Sports Sci Med. 2020;19:237–44.
PubMed PubMed Central Google Scholar
Akima H, Kuno SY, Fukunaga T, Katsuta S. Architectural properties and specific tension of human knee extensor and flexor muscles based on magnetic resonance imaging. Jpn J Phys Fit Sports Med. 1995;44:267–78. https://doi.org/10.7600/jspfsm1949.44.267.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE; 2016. pp. 770–8.
Chollet, F. Xception: CHOLLET, François. Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE; 2017. pp. 1251–8.
Jaccard P. Distribution comparée de la flore alpine dans quelques régions des Alpes occidentales et orientales. Bull Murithienne. 1902;31:81–92.
Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26:297–302.
Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L C. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE; 2018. pp. 4510–20.
Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI conference on artificial intelligence. 2017; vol.31, No.1
Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell. 2017;40(4):834–48.
Zhang X, Xu G, Wu X, Liao W, et al. Fast-SegNet: fast semantic segmentation network for small objects. Multim Tools Appl. 2024;83(34):81039–55.
Comments (0)