Scatter and beam hardening effect corrections in pelvic region cone beam CT images using a convolutional neural network

Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53(5):1337–49. https://doi.org/10.1016/s0360-3016(02)02884-5.

Article  PubMed  Google Scholar 

Siewerdsen JH, Daly MJ, Bakhtiar B, et al. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT. Med Phys. 2006;33(1):187–97. https://doi.org/10.1118/1.2148916.

Article  CAS  PubMed  Google Scholar 

Gu R, Dogandžić A (2013) Sparse X-ray CT image reconstruction and blind beam hardening correction via mass attenuation discretization. 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) 244–47. https://doi.org/10.1109/CAMSAP.2013.6714053

Branco D, Mayadev J, Moore K, Ray X. Dosimetric and feasibility evaluation of a CBCT-based daily adaptive radiotherapy protocol for locally advanced cervical cancer. J Appl Clin Med Phys. 2023;24(1): e13783. https://doi.org/10.1002/acm2.13783.

Article  PubMed  Google Scholar 

Moazzezi M, Rose B, Kisling K, Moore KL, Ray X. Prospects for daily online adaptive radiotherapy via ethos for prostate cancer patients without nodal involvement using unedited CBCT auto-segmentation. J Appl Clin Med Phys. 2021;22(10):82–93. https://doi.org/10.1002/acm2.13399.

Article  PubMed  PubMed Central  Google Scholar 

Bojechko C, Hua P, Sumner W, Guram K, Atwood T, Sharabi A. Adaptive replanning using cone beam CT for deformation of original CT simulation. J Med Radiat Sci. 2022;69(2):267–72. https://doi.org/10.1002/jmrs.549.

Article  PubMed  Google Scholar 

Ritschl L, Fahrig R, Knaup M, Maier J, Kachelrieß M. Robust primary modulation-based scatter estimation for cone-beam CT. Med Phys. 2015;42(1):469–78. https://doi.org/10.1118/1.4903261.

Article  PubMed  PubMed Central  Google Scholar 

Schafer S, Stayman JW, Zbijewski W, Schmidgunst C, Kleinszig G, Siewerdsen JH. Antiscatter grids in mobile C-arm cone-beam CT: effect on image quality and dose. Med Phys. 2012;39(1):153–9. https://doi.org/10.1118/1.3666947.

Article  CAS  PubMed  Google Scholar 

Zhu L, Xie Y, Wang J, Xing L. Scatter correction for cone-beam CT in radiation therapy. Med Phys. 2009;36(6):2258-68. https://doi.org/10.1118/1.3130047

Ning R, Tang X, Conover D. X-ray scatter correction algorithm for cone beam CT imaging. Med Phys. 2004;31(5):1195–202. https://doi.org/10.1118/1.1711475.

Article  PubMed  Google Scholar 

Sun M, Star-Lack JM. Improved scatter correction using adaptive scatter kernel superposition. Phys Med Biol. 2010;55(22):6695–720. https://doi.org/10.1088/0031-9155/55/22/007.

Article  CAS  PubMed  Google Scholar 

Trapp P, Maier J, Susenburger M, Sawall S, Kachelrieß M. Empirical scatter correction: CBCT scatter artifact reduction without prior information. Med Phys. 2022;49(7):4566–84. https://doi.org/10.1002/mp.15656.

Article  PubMed  Google Scholar 

Hsieh J, Molthen RC, Dawson CA, Johnson RH. An iterative approach to the beam hardening correction in cone beam CT. Med Phys. 2000;27(1):23–9. https://doi.org/10.1118/1.598853.

Article  CAS  PubMed  Google Scholar 

Stankovic U, Ploeger LS, van Herk M, Sonke JJ. Optimal combination of anti-scatter grids and software correction for CBCT imaging. Med Phys. 2017;44(9):4437–51. https://doi.org/10.1002/mp.12385.

Article  PubMed  Google Scholar 

Nomura Y, Xu Q, Shirato H, Shimizu S, Xing L. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network. Med Phys. 2019;46(7):3142–55. https://doi.org/10.1002/mp.13583.

Article  PubMed  PubMed Central  Google Scholar 

Lee H, Lee J. A Deep Learning-Based Scatter Correction of Simulated X-ray Images. Electronics. 2019;8(9):944. https://doi.org/10.3390/electronics8090944.

Article  Google Scholar 

Hansen DC, Landry G, Kamp F, et al. ScatterNet: A convolutional neural network for cone-beam CT intensity correction. Med Phys. 2018;45(11):4916–26. https://doi.org/10.1002/mp.13175.

Article  CAS  PubMed  Google Scholar 

Zhang X, Jiang Y, Luo C, Li D, Niu T, Yu G. Image-based scatter correction for cone-beam CT using flip swin transformer U-shape network. Med Phys. 2023;50(8):5002–19. https://doi.org/10.1002/mp.16277.

Article  PubMed  Google Scholar 

Harms J, Lei Y, Wang T, et al. Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography. Med Phys. 2019;46(9):3998–4009. https://doi.org/10.1002/mp.13656.

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Chen X, Zhu J, et al. A two-step method to improve image quality of CBCT with phantom-based supervised and patient-based unsupervised learning strategies. Phys Med Biol. 2022;67(8): 084001. https://doi.org/10.1088/1361-6560/ac6289.

Article  Google Scholar 

Tang H, Lin YB, Jiang SD, Li Y, Li T, Bao XD. A new dental CBCT metal artifact reduction method based on a dual-domain processing framework. Phys Med Biol. 2023;68(17): 175016. https://doi.org/10.1088/1361-6560/acec29.

Article  CAS  Google Scholar 

Bayaraa T, Hyun CM, Jang TJ, Lee SM, Seo JK. A two-stage approach for beam hardening artifact reduction in low-dose dental CBCT. IEEE Access. 2020;8:225981–94. https://doi.org/10.1109/ACCESS.2020.3044981.

Article  Google Scholar 

Sisniega A, Zbijewski W, Badal A, et al. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions. Med Phys. 2013;40(5): 051915. https://doi.org/10.1118/1.4801895.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lazos D, Williamson JF. Monte Carlo evaluation of scatter mitigation strategies in cone-beam CT. Med Phys. 2010;37(10):5456–70. https://doi.org/10.1118/1.3488978.

Article  PubMed  PubMed Central  Google Scholar 

Poludniowski G, Evans PM, Hansen VN, Webb S. An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT. Phys Med Biol. 2009;54(12):3847–64. https://doi.org/10.1088/0031-9155/54/12/016.

Article  CAS  PubMed  Google Scholar 

Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. U-Net++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging. 2020;39(6):1856–67. https://doi.org/10.1109/TMI.2019.2959609.

Article  PubMed  Google Scholar 

Dong G, Zhang C, Liang X, et al. A deep unsupervised learning model for artifact correction of pelvis cone-beam CT. Front Oncol. 2021;11: 686875. https://doi.org/10.3389/fonc.2021.686875.

Article  PubMed  PubMed Central  Google Scholar 

Tong T, Li M. Abdominal or pelvic enhanced CT images within 10 days before surgery of 230 patients with stage II colorectal cancer (StageII-Colorectal-CT). Cancer Imaging Arch. 2022. https://doi.org/10.7937/p5k5-tg43.

Article  Google Scholar 

Thompson RF, Kanwar A, Merz B, et al. Stress-testing pelvic autosegmentation algorithms using anatomical edge cases (prostate anatomical edge cases). Cancer Imaging Arch. 2023. https://doi.org/10.7937/QSTF-ST65.

Article  Google Scholar 

Hudobivnik N, Schwarz F, Johnson T, et al. Comparison of proton therapy treatment planning for head tumors with a pencil beam algorithm on dual and single energy CT images. Med Phys. 2016;43(1):495. https://doi.org/10.1118/1.4939106.

Article  PubMed  Google Scholar 

White DR, Woodard HQ, Hammond SM. Average soft-tissue and bone models for use in radiation dosimetry. Br J Radiol. 1987;60(717):907–13. https://doi.org/10.1259/0007-1285-60-717-907.

Article  CAS  PubMed  Google Scholar 

Berger MJ, Hubbell JH, Seltzer SM, et al. (1987) XCOM: Photon Cross Sections Database. NIST Standard Reference Database 8 (XGAM) https://doi.org/10.18434/T48G6X

Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional networks for biomedical image segmentation. Internatioal Conf Med Imag Comput Computerassisted Intervention(MICCAI) 234–41. https://doi.org/10.48550/arXiv.1505.04597

He K, Zhang X, Ren S, Sun J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. IEEE International Conference on Computer Vision (ICCV). 2015:1026–34. https://doi.org/10.48550/arXiv.1502.01852

Hirayama H, Namito Y, Bielajew AF, Wilderman SJ, Nelson WR. The EGS5 Code System. High Energy Accelerator Research Organization (KEK). 2005.

Garduno E, Herman GT. Superiorization of the ML-EM algorithm. IEEE Trans Nucl Sci. 2013;61:162–72. https://doi.org/10.1109/TNS.2013.2283529.

Comments (0)

No login
gif