Welch WJ. Mammalian stress response: cell physiology, structure /Function of stress proteins, and implications for medicine and disease. Physiol Rev. 1992;78:1063–81.
Jäättelä M, Wissing D. Emerging role of heat shock proteins in biology and medicine. Ann Med. 1992;24:249–58.
Macario AJL, Conway de Macario E. Sick chaperones, cellular stress, and disease. New Engl J Med. 2005;353:1489–501.
Lindquist S, Craig EA. The heat shock proteins. Annu Rev Genet. 1988;22:631–77.
Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 1999;61:243–82.
Jee H. Size dependent classification of heat shock proteins -a mini-review. J Exerc Rehab. 2016;12:255–9.
Ciocca DR, Oesterreich S, Chamness GC, McGuire WL, Fuqua SA. Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst. 1993;85:1558–70.
Lallier M, Marchandet L, Moukengue B, Charrier C, Baud’huin M, Verrecchia F, Ory B, Lamoureux F. Molecular chaperones in osteosarcoma: diagnosis and therapeutic issues. Cells. 2021;10(4):754.
CAS PubMed PubMed Central Google Scholar
Arts HJ, Hollema H, Lemstra W, Willemse PH, De Vries EG, Kampinga HH. Zee. Heat-shock-protein-27 (hsp27) expression in ovarian carcinoma: relation in response to chemotherapy and prognosis. Int J Cancer. 1999;84(3):234–8. Van der.
Trieb K, Lang S, Kotz R. Heat shock protein 72 in human osteosarcoma: T-lymphocyte reactivity and cytotoxicity. Ped Hematol Oncol. 2000;17:1–10.
Trieb K, Kohlbeck R, Lang S, Klinger H, Blahovec H. Kotz. Heat shock protein 72 expression in chondrosarcoma correlates with differentiation. J Canc Res Clin Oncol. 2000;126:167–70.
Trieb K, Sulzbacher I, Kubista B. Recurrence rate and progression of chondrosarcoma is correlated with heat shock protein expression. Oncol Lett. 2016;11:521–4.
Trieb K, Gerth R, Holzer G, Grohs J, Berger P, Kotz R. Antibodies to heat shock protein 90 in osteosarcoma patients correlate with response to neoadjuvant chemotherapy. Br J Cancer. 2000;82:85–7.
Vargas-Roig LM, Gago FE, Tello O, Aznar JC, Ciocca DR. Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer. 1998;79(5):468–75.
Hang K, Ye C, Chen E, Zhang W, Xue D, Pan Z. Role of the heat shock protein family in bone metabolism. Cell Stress Chap. 2018;23:1153–64.
Mountziaris PM, Spicer PP, Kasper FK, Mikos AG. Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng Part B Rev. 2011;17:393–402.
CAS PubMed PubMed Central Google Scholar
Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42:551–5.
PubMed PubMed Central Google Scholar
Nich C, Takakubo Y, Pajarinen J, Ainola M, Salem A, Sillat T, Rao AJ, Raska M, Tamaki Y, Takagi M, Konttinen YT, Goodman SB, Gallo J. Macrophages-Key cells in the response to wear debris from joint replacements. J Biomed Mater Res A. 2013;101:3033–345.
PubMed PubMed Central Google Scholar
Trieb K, Windhager R. Receptor activator of nuclear factor ΚB expression is a prognostic factor in human osteosarcoma. Oncol Lett. 2015;10:1813–5.
CAS PubMed PubMed Central Google Scholar
Kolar P, Schmidt-Bleek K, Schell H, Gaber T, Toben D, Schmidmaier G, Perka C, Buttgereit F, Duda GN. The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B Rev. 2010;16:427–34.
Schindeler A, McDonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol. 2008;19:459–66.
Tylicka M, Guszczyn T, Maksimowicz M, Kamińska J, Matuszczak E, Karpińska M, Koper-Lenkiewicz OM. The concentration of selected inflammatory cytokines (IL-6, IL-8, CXCL5, IL-33) and Damage-Associated molecular patterns (HMGB-1, HSP-70) released in an early response to distal forearm fracture and the performed closed reduction with Kirschner wire fixation in children. Front Endocrinol (Lausanne). 2021;12:749667. 10.3389.
Wang G, Xu Y, Zhang L, Ye D, Feng X, Fu T, Bai Y. Enhancement of apoptosis by titanium alloy internal fixations during microwave treatments for fractures: an animal study. PLoS ONE. 2015;10(7):e0132046. 10.1371.
PubMed PubMed Central Google Scholar
Kim YS, Koh JM, Lee YS, Kim BJ, Lee SH, Lee KU, Kim GS. Increased Circulating heat shock protein 60 induced by menopause, stimulates apoptosis of osteoblast-lineage cells via up-regulation of toll-like receptors. Bone. 2009;45:68–76.
Baker TA, Romero J, Bach HH 4th, Strom JA, Gamelli RL, Majetschak M. Systemic release of cytokines and heat shock proteins in Porcine models of polytrauma and hemorrhage. Crit Care Med. 2012;40:876–85.
CAS PubMed PubMed Central Google Scholar
Sun Y, Chen R, Zhu D, Shen ZQ, Zhao HB, Lee WH. Osteoking improves OP rat by enhancing HSP90–β expression. Int J Mol Med. 2020;45:1543–53.
CAS PubMed PubMed Central Google Scholar
Chai RC, Kouspou MM, Lang BJ, Nguyen CH, van der Kraan AG, Vieusseux JL, Lim RC, Gillespie MT, Benjamin IJ, Quinn JM, Price JT. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner. J Biol Chem. 2014;289:13602–14.
CAS PubMed PubMed Central Google Scholar
van Dijk FS, Semler O, Etich J, et al. Interaction between KDELR2 and HSP47 as a key determinant in osteogenesis imperfecta caused by Bi-allelic variants in KDELR2. Am J Hum Genet. 2020;107:989–99.
PubMed PubMed Central Google Scholar
Lindert U, Weis M, Rai J, Seeliger F, Hausser I, Leeb T, Eyre D, Rohrbach M, Giunta C. Molecular consequences of the SERPINH1/HSP47 mutation in the dachshund natural model of osteogenesis imperfecta. J Biol Chem. 2015;290:17679–89.
CAS PubMed PubMed Central Google Scholar
Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M, Alrasheed S, Pepin MG, Weis MA, Eyre DR, Byers PH. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86:389–98.
CAS PubMed PubMed Central Google Scholar
Zhang J, Tao DQ, Zhao H, Yin ZY. Expression of Hsp70 and Caspase-3 in rabbits after severe traumatic brain injury. Chin J Traumatol. 2012;15:338–41.
Barbe MF, Gallagher S, Massicotte VS, Tytell M, Popoff SN, Barr-Gillespie AE. The interaction of force and repetition on musculoskeletal and neural tissue responses and sensorimotor behavior in a rat model of work-related musculoskeletal disorders. BMC Musculoskelet Disord 2013 Oct 25;14:303. 10.1186
Leppik L, Oliveira KMC, Bhavsar MB, Barker JH. Electrical stimulation in bone tissue engineering treatments. Eur J Trauma Emerg Surg. 2020;46(2):231–44.
PubMed PubMed Central Google Scholar
Delle Monache S, Angelucci A, Sanità P, Iorio R, Bennato F, Mancini F, Gualtieri G, Colonna RC. Inhibition of angiogenesis mediated by extremely low-frequency magnetic fields (ELF-MFs). PLoS ONE. 2013;8(11):e79309. 10.1371.
PubMed PubMed Central Google Scholar
Koh JM, et al. Heat shock protein 60 causes osteoclastic bone resorption via toll-like receptor-2 in Estrogen deficiency. Bone. 2009;45(4):650–60. https://doi.org/10.1016/j.bone.2009.06.007
Article CAS PubMed Google Scholar
Hang K, Ye C, Chen E, Zhang W, Xue D, Pan Z. Role of the heat shock protein family in bone metabolism. Cell Stress Chaperones. 2018;23(6):1153–64. https://doi.org/10.1007/s12192-018-0932-z
Article PubMed PubMed Central Google Scholar
Li C, et al. Downregulation of heat shock protein 70 impairs osteogenic and chondrogenic differentiation in human mesenchymal stem cells. Sci Rep. 2018;8(1):553. https://doi.org/10.1038/s41598-017-18541-1
Article CAS PubMed PubMed Central Google Scholar
Zhang W, et al. Overexpression of HSPA1A enhances the osteogenic differentiation of bone marrow mesenchymal stem cells via activation of the Wnt/beta-catenin signaling pathway. Sci Rep. 2016;6:27622. https://doi.org/10.1038/srep27622
Comments (0)