Pape H-C, Lefering R, Butcher N, Peitzman A, Leenen L, Marzi I, et al. The definition of polytrauma revisited. J Trauma Acute Care Surg. 2014;77(5):780–6. https://doi.org/10.1097/ta.0000000000000453.
Keel M, Trentz O. Pathophysiology of polytrauma. Injury. 2005;36(6):691–709. https://doi.org/10.1016/j.injury.2004.12.037.
Wutzler S, Maegele M, Wafaisade A, Wyen H, Marzi I, Lefering R, et al. Risk stratification in trauma and haemorrhagic shock: scoring systems derived from the traumaregister DGU((R)). Injury. 2014;45(Suppl 3):S29–34. https://doi.org/10.1016/j.injury.2014.08.014.
Meybohm P, Cavus E, Dorges V, Weber B, Stadlbauer KH, Wenzel V, et al. Release of protein S100B in haemorrhagic shock: effects of small volume resuscitation combined with arginine vasopressin. Resuscitation. 2008;76(3):449–56. https://doi.org/10.1016/j.resuscitation.2007.09.002.
Article CAS PubMed Google Scholar
Cannon JW, Hemorrhagic Shock N, Engl. J Med. 2018;378(4):370–9. https://doi.org/10.1056/NEJMra1705649.
Abuelazm M, Rezq H, Mahmoud A, Tanashat M, Salah A, Saleh O, et al. The efficacy and safety of pre-hospital plasma in patients at risk for hemorrhagic shock: an updated systematic review and meta-analysis of randomized controlled trials. Eur J Trauma Emerg Surg. 2024;50(6):2697–707. https://doi.org/10.1007/s00068-024-02461-7.
Article PubMed PubMed Central Google Scholar
Owattanapanich N, Chittawatanarat K, Benyakorn T, Sirikun J. Risks and benefits of hypotensive resuscitation in patients with traumatic hemorrhagic shock: a meta-analysis. Scand J Trauma Resusc Emerg Med. 2018;26(1). https://doi.org/10.1186/s13049-018-0572-4.
Hussmann B, Lendemans S. Pre-hospital and early in-hospital management of severe injuries: changes and trends. Injury. 2014;45(Suppl 3):S39–42. https://doi.org/10.1016/j.injury.2014.08.016.
Giordano V, Giannoudis VP, Giannoudis PV. Current trends in resuscitation for polytrauma patients with traumatic haemorrhagic shock. Injury. 2020;51(9):1945–8. https://doi.org/10.1016/j.injury.2020.08.008.
Conlay LA, Evoniuk G, Wurtman RJ. Endogenous adenosine and hemorrhagic shock: effects of caffeine administration or caffeine withdrawal. Proc Natl Acad Sci U S A. 1988;85(12):4483–5. https://doi.org/10.1073/pnas.85.12.4483.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Lautt WW. Arterial and venous plasma concentrations of adenosine during haemorrhage. Br J Pharmacol. 1992;105(4):765–7. https://doi.org/10.1111/j.1476-5381.1992.tb09052.x.
Article CAS PubMed PubMed Central Google Scholar
Hasko G, Linden J, Cronstein B, Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov. 2008;7(9):759–70. https://doi.org/10.1038/nrd2638.
Article CAS PubMed PubMed Central Google Scholar
Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med. 2012;367(24):2322–33. https://doi.org/10.1056/NEJMra1205750.
Article CAS PubMed PubMed Central Google Scholar
Reutershan J, Vollmer I, Stark S, Wagner R, Ngamsri KC, Eltzschig HK. Adenosine and inflammation: CD39 and CD73 are critical mediators in LPS-induced PMN trafficking into the lungs. FASEB J. 2009;23(2):473–82. https://doi.org/10.1096/fj.08-119701.
Article CAS PubMed Google Scholar
Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets–what are the challenges? Nat Rev Drug Discov. 2013;12(4):265–86. https://doi.org/10.1038/nrd3955.
Article CAS PubMed PubMed Central Google Scholar
He HR, Li YJ, He GH, Qiang H, Zhai YJ, Ma M, et al. The polymorphism in ADORA3 decreases transcriptional activity and influences the chronic heart failure risk in the Chinese. Biomed Res Int. 2018;2018:4969385. https://doi.org/10.1155/2018/4969385.
Article CAS PubMed PubMed Central Google Scholar
Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev. 2009;61(1):62–97. https://doi.org/10.1124/pr.108.000547.
Article CAS PubMed Google Scholar
Hlatky R, Goodman JC, Valadka AB, Robertson CS. Role of nitric oxide in cerebral blood flow abnormalities after traumatic brain injury. J Cereb Blood Flow Metab. 2003;23(5):582–8. https://doi.org/10.1097/01.WCB.0000059586.71206.F3.
Article CAS PubMed Google Scholar
Berra LV, Carcereri De Prati A, Suzuki H, Pasqualin A. The role of constitutive and inducible nitric oxide synthase in the human brain after subarachnoid hemorrhage. J Neurosurg Sci. 2007;51(1):1–9. https://www.ncbi.nlm.nih.gov/pubmed/17369785.
Vellimana AK, Milner E, Azad TD, Harries MD, Zhou ML, Gidday JM, et al. Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke. 2011;42(3):776–82. https://doi.org/10.1161/STROKEAHA.110.607200.
Article CAS PubMed Google Scholar
Hanggi D, Steiger HJ. Nitric oxide in subarachnoid haemorrhage and its therapeutics implications. Acta Neurochir (Wien). 2006;148(6):605–13. https://doi.org/10.1007/s00701-005-0721-1. discussion 13.
Article CAS PubMed Google Scholar
Kurose I, Wolf R, Grisham MB, Granger DN. Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res. 1994;74(3):376–82. https://doi.org/10.1161/01.res.74.3.376.
Article CAS PubMed Google Scholar
Cherian L, Goodman JC, Robertson CS. Brain nitric oxide changes after controlled cortical impact injury in rats. J Neurophysiol. 2000;83(4):2171–8. https://doi.org/10.1152/jn.2000.83.4.2171.
Article CAS PubMed Google Scholar
Sakowitz OW, Wolfrum S, Sarrafzadeh AS, Stover JF, Dreier JP, Dendorfer A, et al. Relation of cerebral energy metabolism and extracellular nitrite and nitrate concentrations in patients after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2001;21(9):1067–76. https://doi.org/10.1097/00004647-200109000-00004.
Article CAS PubMed Google Scholar
Sadamitsu D, Kuroda Y, Nagamitsu T, Tsuruta R, Inoue T, Ueda T, et al. Cerebrospinal fluid and plasma concentrations of nitric oxide metabolites in postoperative patients with subarachnoid hemorrhage. Crit Care Med. 2001;29(1):77–9. https://doi.org/10.1097/00003246-200101000-00018.
Article CAS PubMed Google Scholar
Sehba FA, Chereshnev I, Maayani S, Friedrich V Jr., Bederson JB. Nitric oxide synthase in acute alteration of nitric oxide levels after subarachnoid hemorrhage. Neurosurgery. 2004;55(3):671–7. https://doi.org/10.1227/01.neu.0000134557.82423.b2. discussion 7–8.
Pluta RM. Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochir Suppl. 2008;104:139–47. https://doi.org/10.1007/978-3-211-75718-5_28.
Article CAS PubMed PubMed Central Google Scholar
Pluta RM, Oldfield EH. Analysis of nitric oxide (NO) in cerebral vasospasm after aneursymal bleeding. Rev Recent Clin Trials. 2007;2(1):59–67. https://doi.org/10.2174/157488707779318062.
Article CAS PubMed Google Scholar
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Endothelial nitric oxide synthase: from biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene. 2016;575(2 Pt 3):584–99. https://doi.org/10.1016/j.gene.2015.09.061.
Comments (0)