Role of adenosine A receptor and endothelial nitric oxide synthase in patients with traumatic hemorrhagic shock

Pape H-C, Lefering R, Butcher N, Peitzman A, Leenen L, Marzi I, et al. The definition of polytrauma revisited. J Trauma Acute Care Surg. 2014;77(5):780–6. https://doi.org/10.1097/ta.0000000000000453.

Article  PubMed  Google Scholar 

Keel M, Trentz O. Pathophysiology of polytrauma. Injury. 2005;36(6):691–709. https://doi.org/10.1016/j.injury.2004.12.037.

Article  PubMed  Google Scholar 

Wutzler S, Maegele M, Wafaisade A, Wyen H, Marzi I, Lefering R, et al. Risk stratification in trauma and haemorrhagic shock: scoring systems derived from the traumaregister DGU((R)). Injury. 2014;45(Suppl 3):S29–34. https://doi.org/10.1016/j.injury.2014.08.014.

Article  PubMed  Google Scholar 

Meybohm P, Cavus E, Dorges V, Weber B, Stadlbauer KH, Wenzel V, et al. Release of protein S100B in haemorrhagic shock: effects of small volume resuscitation combined with arginine vasopressin. Resuscitation. 2008;76(3):449–56. https://doi.org/10.1016/j.resuscitation.2007.09.002.

Article  CAS  PubMed  Google Scholar 

Cannon JW, Hemorrhagic Shock N, Engl. J Med. 2018;378(4):370–9. https://doi.org/10.1056/NEJMra1705649.

Article  Google Scholar 

Abuelazm M, Rezq H, Mahmoud A, Tanashat M, Salah A, Saleh O, et al. The efficacy and safety of pre-hospital plasma in patients at risk for hemorrhagic shock: an updated systematic review and meta-analysis of randomized controlled trials. Eur J Trauma Emerg Surg. 2024;50(6):2697–707. https://doi.org/10.1007/s00068-024-02461-7.

Article  PubMed  PubMed Central  Google Scholar 

Owattanapanich N, Chittawatanarat K, Benyakorn T, Sirikun J. Risks and benefits of hypotensive resuscitation in patients with traumatic hemorrhagic shock: a meta-analysis. Scand J Trauma Resusc Emerg Med. 2018;26(1). https://doi.org/10.1186/s13049-018-0572-4.

Hussmann B, Lendemans S. Pre-hospital and early in-hospital management of severe injuries: changes and trends. Injury. 2014;45(Suppl 3):S39–42. https://doi.org/10.1016/j.injury.2014.08.016.

Article  PubMed  Google Scholar 

Giordano V, Giannoudis VP, Giannoudis PV. Current trends in resuscitation for polytrauma patients with traumatic haemorrhagic shock. Injury. 2020;51(9):1945–8. https://doi.org/10.1016/j.injury.2020.08.008.

Article  PubMed  Google Scholar 

Conlay LA, Evoniuk G, Wurtman RJ. Endogenous adenosine and hemorrhagic shock: effects of caffeine administration or caffeine withdrawal. Proc Natl Acad Sci U S A. 1988;85(12):4483–5. https://doi.org/10.1073/pnas.85.12.4483.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Lautt WW. Arterial and venous plasma concentrations of adenosine during haemorrhage. Br J Pharmacol. 1992;105(4):765–7. https://doi.org/10.1111/j.1476-5381.1992.tb09052.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hasko G, Linden J, Cronstein B, Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov. 2008;7(9):759–70. https://doi.org/10.1038/nrd2638.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med. 2012;367(24):2322–33. https://doi.org/10.1056/NEJMra1205750.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reutershan J, Vollmer I, Stark S, Wagner R, Ngamsri KC, Eltzschig HK. Adenosine and inflammation: CD39 and CD73 are critical mediators in LPS-induced PMN trafficking into the lungs. FASEB J. 2009;23(2):473–82. https://doi.org/10.1096/fj.08-119701.

Article  CAS  PubMed  Google Scholar 

Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets–what are the challenges? Nat Rev Drug Discov. 2013;12(4):265–86. https://doi.org/10.1038/nrd3955.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He HR, Li YJ, He GH, Qiang H, Zhai YJ, Ma M, et al. The polymorphism in ADORA3 decreases transcriptional activity and influences the chronic heart failure risk in the Chinese. Biomed Res Int. 2018;2018:4969385. https://doi.org/10.1155/2018/4969385.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev. 2009;61(1):62–97. https://doi.org/10.1124/pr.108.000547.

Article  CAS  PubMed  Google Scholar 

Hlatky R, Goodman JC, Valadka AB, Robertson CS. Role of nitric oxide in cerebral blood flow abnormalities after traumatic brain injury. J Cereb Blood Flow Metab. 2003;23(5):582–8. https://doi.org/10.1097/01.WCB.0000059586.71206.F3.

Article  CAS  PubMed  Google Scholar 

Berra LV, Carcereri De Prati A, Suzuki H, Pasqualin A. The role of constitutive and inducible nitric oxide synthase in the human brain after subarachnoid hemorrhage. J Neurosurg Sci. 2007;51(1):1–9. https://www.ncbi.nlm.nih.gov/pubmed/17369785.

CAS  PubMed  Google Scholar 

Vellimana AK, Milner E, Azad TD, Harries MD, Zhou ML, Gidday JM, et al. Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke. 2011;42(3):776–82. https://doi.org/10.1161/STROKEAHA.110.607200.

Article  CAS  PubMed  Google Scholar 

Hanggi D, Steiger HJ. Nitric oxide in subarachnoid haemorrhage and its therapeutics implications. Acta Neurochir (Wien). 2006;148(6):605–13. https://doi.org/10.1007/s00701-005-0721-1. discussion 13.

Article  CAS  PubMed  Google Scholar 

Kurose I, Wolf R, Grisham MB, Granger DN. Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res. 1994;74(3):376–82. https://doi.org/10.1161/01.res.74.3.376.

Article  CAS  PubMed  Google Scholar 

Cherian L, Goodman JC, Robertson CS. Brain nitric oxide changes after controlled cortical impact injury in rats. J Neurophysiol. 2000;83(4):2171–8. https://doi.org/10.1152/jn.2000.83.4.2171.

Article  CAS  PubMed  Google Scholar 

Sakowitz OW, Wolfrum S, Sarrafzadeh AS, Stover JF, Dreier JP, Dendorfer A, et al. Relation of cerebral energy metabolism and extracellular nitrite and nitrate concentrations in patients after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2001;21(9):1067–76. https://doi.org/10.1097/00004647-200109000-00004.

Article  CAS  PubMed  Google Scholar 

Sadamitsu D, Kuroda Y, Nagamitsu T, Tsuruta R, Inoue T, Ueda T, et al. Cerebrospinal fluid and plasma concentrations of nitric oxide metabolites in postoperative patients with subarachnoid hemorrhage. Crit Care Med. 2001;29(1):77–9. https://doi.org/10.1097/00003246-200101000-00018.

Article  CAS  PubMed  Google Scholar 

Sehba FA, Chereshnev I, Maayani S, Friedrich V Jr., Bederson JB. Nitric oxide synthase in acute alteration of nitric oxide levels after subarachnoid hemorrhage. Neurosurgery. 2004;55(3):671–7. https://doi.org/10.1227/01.neu.0000134557.82423.b2. discussion 7–8.

Article  PubMed  Google Scholar 

Pluta RM. Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochir Suppl. 2008;104:139–47. https://doi.org/10.1007/978-3-211-75718-5_28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pluta RM, Oldfield EH. Analysis of nitric oxide (NO) in cerebral vasospasm after aneursymal bleeding. Rev Recent Clin Trials. 2007;2(1):59–67. https://doi.org/10.2174/157488707779318062.

Article  CAS  PubMed  Google Scholar 

Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Endothelial nitric oxide synthase: from biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene. 2016;575(2 Pt 3):584–99. https://doi.org/10.1016/j.gene.2015.09.061.

Comments (0)

No login
gif