Babizhayev MA (2016) Generation of reactive oxygen species in the anterior eye segment. Synergistic codrugs of N-acetylcarnosine lubricant eye drops and mitochondria-targeted antioxidant act as a powerful therapeutic platform for the treatment of cataracts and primary open-angle glaucoma. BBA Clin 6:49–68
Article PubMed PubMed Central Google Scholar
Beebe DC, Holekamp NM, Shui YB (2010) Oxidative damage and the prevention of age-related cataracts. Ophthalmic Res 44(3):155–165 doi: 10.1159/000316481.https://doi.org/10.1159/000316481
Article CAS PubMed PubMed Central Google Scholar
Brennan L, Disatham J, Kantorow M (2021) Mechanisms of organelle elimination for lens development and differentiation. Exp Eye Res 209:108682https://doi.org/10.1016/j.exer.2021.108682
Article CAS PubMed Google Scholar
Cicinelli MV, Buchan JC, Nicholson M, Varadaraj V, Khanna RC, Cataracts (2023) Lancet 401(10374):377–389 https://doi.org/10.1016/S0140-6736(22)01839-6
Chhunchha B, Kubo E, Singh DP (2022) Obligatory role of AMPK activation and Antioxidant Defense Pathway in the Regulatory effects of Metformin on Cellular Protection and Prevention of Lens Opacity. Cells 11(19) https://doi.org/10.3390/cells11193021
Diwanji N, Bergmann A (2020) Basement membrane damage by ROS- and JNK-mediated Mmp2 activation drives macrophage recruitment to overgrown tissue. Nat Commun 11(1):3631https://doi.org/10.1038/s41467-020-17399-8
Article CAS PubMed PubMed Central Google Scholar
Elkington PT, Friedland JS (2006) Matrix metalloproteinases in destructive pulmonary pathology. Thorax 61(3):259–266https://doi.org/10.1136/thx
Article CAS PubMed PubMed Central Google Scholar
Georget M, Defois A, Guiho R, Bon N, Allain S, Boyer C et al (2023) Development of a DNA damage-induced senescence model in osteoarthritic chondrocytes. Aging 15(17):8576–8593https://doi.org/10.18632/aging.204881
Article CAS PubMed PubMed Central Google Scholar
Henriet P, Emonard H (2019) Matrix metalloproteinase-2: not (just) a hero of the past. Biochimie 166:223–232https://doi.org/10.1016/j.biochi.2019.07.019
Article CAS PubMed Google Scholar
Huang Y, Liu Y, Yu S, Li W, Li J, Zhao B et al (2022) Biliverdin Reductase A protects Lens epithelial cells against oxidative damage and Cellular Senescence in Age-related cataract. Oxid Med Cell Longev. 2022:5628946.https://doi.org/10.1155/2022/5628946
Article PubMed PubMed Central Google Scholar
Ibanez Gaspar V, McMorrow T (2023) The Curcuminoid EF24 in combination with TRAIL reduces human renal Cancer Cell Migration by decreasing MMP-2/MMP-9 activity through a reduction in H(2)O(2). Int J Mol Sci 24(2) https://doi.org/10.3390/ijms24021043
Ji Q, Liu J, Wang G, Liu L, Zhong J (2021) EphA2 overexpression reduces H2O2-induced damage of lens epithelial cells. Genet Mol Biol 44(3):e20200414. https://doi.org/10.1590/1678-4685-GMB-2020-0414
Article CAS PubMed PubMed Central Google Scholar
Jing RH, Hu CH, Qi TT, Ma B (2023) Role of reactive oxygen species in epithelial-mesenchymal transition and apoptosis of human lens epithelial cells. Int J Ophthalmol 16(12):1935–1941https://doi.org/10.18240/ijo.2023.12.04
Article PubMed PubMed Central Google Scholar
Kisic B, Miric D, Zoric L, Ilic A, Dragojevic I (2012) Antioxidant capacity of lenses with age-related cataract. Oxid Med Cell Longev 2012:467130 https://doi.org/10.1155/2012/467130
Article CAS PubMed PubMed Central Google Scholar
Lee H, Kim SY, Lee SW, Kwak S, Li H, Piao R et al (2022) Amentoflavone-Enriched Selaginella rossii Protects against Ultraviolet- and Oxidative Stress-Induced Aging in Skin Cells. Life (Basel). 12(12) https://doi.org/10.3390/life12122106
Lei K, Wei Q, Cheng Y, Wang Z, Wu H, Zhao F et al (2023) OONO-/MMP2/MMP9 pathway-mediated apoptosis of porcine granulosa cells is associated with DNA damage. Reproduction 165(4):431–443https://doi.org/10.1530/REP-22-0295
Article CAS PubMed Google Scholar
Li P, Zhong R, Yu J, Wang Y, Wang C, Geng W et al (2023) DCLRE1A contributes to DNA damage repair and apoptosis in age-related cataracts by regulating the lncRNA/miRNA/mRNA Axis. Curr Eye Res 48(11):992–1005
Article CAS PubMed Google Scholar
Liu J, Shao T, Zhang J, Liu Q, Hua H, Zhang H et al (2022) Gamma synuclein promotes cancer metastasis through the MKK3/6-p38MAPK cascade. Int J Biol Sci 18(8):3167–3177https://doi.org/10.7150/ijbs.69155
Article CAS PubMed PubMed Central Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408https://doi.org/10.1006/meth.2001.1262
Article CAS PubMed Google Scholar
Ma Y, Liu Y, Shu B, Yang J, Lv L, Zhou L et al (2023) CircMAP3K4 protects human lens epithelial cells from H(2)O(2)-induced dysfunction by targeting miR-193a-3p/PLCD3 axis in age-related cataract. Cell Cycle 22(3):303–315
Article CAS PubMed Google Scholar
Miyata Y, Tatsuzaki J, Yang J, Kosano H (2019) Potential therapeutic agents, Polymethoxylated flavones isolated from Kaempferia parviflora for Cataract Prevention through Inhibition of Matrix Metalloproteinase-9 in Lens epithelial cells. Biol Pharm Bull 42(10):1658–1664https://doi.org/10.1248/bpb.b19-00244
Article CAS PubMed Google Scholar
Oda T, Gotoh N, Kasamatsu T, Handa H, Saitoh T, Sasaki N (2023) DNA damage-induced cellular senescence is regulated by 53BP1 accumulation in the nuclear foci and phase separation. Cell Prolif 56(6):e13398https://doi.org/10.1111/cpr.13398
Article CAS PubMed PubMed Central Google Scholar
Osnes-Ringen O, Azqueta AO, Moe MC, Zetterstrom C, Roger M, Nicolaissen B et al (2013) DNA damage in lens epithelium of cataract patients in vivo and ex vivo. Acta Ophthalmol. 91(7):652-6. https://doi.org/10.1111/j.1755-3768.2012.02500.x
Onursal C, Reel B, Bintepe C, Guzeloglu M, Ersoy N, Bagriyanik A (2023) Pioglitazone inhibits oxidative stress, MMP-mediated inflammation and vascular dysfunction in high glucose-induced human saphenous vein grafts. J Diabetes Complications 37(4):108421https://doi.org/10.1016/j.jdiacomp.2023.108421
Article CAS PubMed Google Scholar
Pitiyage GN, Slijepcevic P, Gabrani A, Chianea YG, Lim KP, Prime SS et al (2011) Senescent mesenchymal cells accumulate in human fibrosis by a telomere-independent mechanism and ameliorate fibrosis through matrix metalloproteinases. J Pathol 223(5):604–617https://doi.org/10.1002/path.2839
Shentu XC, Ping XY, Cheng YL, Zhang X, Tang YL, Tang XJ (2018) Hydrogen peroxide-induced apoptosis of human lens epithelial cells is inhibited by parthenolide. Int J Ophthalmol 11(1):12–17https://doi.org/10.18240/ijo.2018.01.03
Article PubMed PubMed Central Google Scholar
Shofuda K, Moriyama K, Nishihashi A, Higashi S, Mizushima H, Yasumitsu H et al (1998) Role of tissue inhibitor of metalloproteinases-2 (TIMP-2) in regulation of pro-gelatinase A activation catalyzed by membrane-type matrix metalloproteinase-1 (MT1-MMP) in human cancer cells. J Biochem 124(2):462–470https://doi.org/10.1093/oxfordjournals.jbchem.a022136
Article CAS PubMed Google Scholar
Sorte K, Sune P, Bhake A, Shivkumar VB, Gangane N, Basak A (2011) Quantitative assessment of DNA damage directly in lens epithelial cells from senile cataract patients. Mol Vis 17:1–6
CAS PubMed PubMed Central Google Scholar
Tu Y, Xie L, Chen L, Yuan Y, Qin B, Wang K et al (2020) Long non-coding RNA MEG3 promotes cataractogenesis by upregulating TP53INP1 expression in age-related cataract. Exp Eye Res 199:108185. https://doi.org/10.1016/j.exer.2020.108185
Article CAS PubMed Google Scholar
Vira HJ, Pradhan VD, Umare VD, Chaudhary AK, Rajadhyksha AG, Nadkar MY et al (2020) Expression of the matrix metalloproteinases MMP-2 and MMP-9 and their inhibitors TIMP-1 and TIMP-2 in systemic lupus erythematosus patients. Neth J Med 78(5):261–268
Wang X, Simpkins JW, Dykens JA, Cammarata PR (2003) Oxidative damage to human lens epithelial cells in culture: estrogen protection of mitochondrial potential, ATP, and cell viability. Invest Ophthalmol Vis Sci 44(5):2067–2075https://doi.org/10.1167/iovs.02-0841
Comments (0)