Nutrient stress triggers sugar-mediated carotenoid production in algal-bacterial interactions

Abrha GT, Makaranga A, Jutur PP (2025) Enhanced lipid accumulation in microalgae Scenedesmus Sp. under nitrogen limitation. Enzym Microb Technol 182:110546. https://doi.org/10.1016/j.enzmictec.2024.110546

Article  CAS  Google Scholar 

Baek K, Yu J, Jeong J, Sim SJ, Bae S, Jin E (2018) Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis. Biotechnol Bioeng 115(3):719–728. https://doi.org/10.1002/bit.26499

Article  PubMed  CAS  Google Scholar 

Barak-Gavish N, Dassa B, Kuhlisch C, Nussbaum I, Brandis A, Rosenberg G, Avraham R, Vardi A (2023) Bacterial lifestyle switch in response to algal metabolites. eLife 12:e84400. https://doi.org/10.7554/eLife.84400

Article  PubMed  PubMed Central  CAS  Google Scholar 

Carillo P, Feil R, Gibon Y, Satoh-Nagasawa N, Jackson D, Bläsing OE, Stitt M, Lunn JE (2013) A fluorometric assay for Trehalose in the Picomole range. Plant Methods 9:21. https://doi.org/10.1186/1746-4811-9-21

Article  PubMed  PubMed Central  CAS  Google Scholar 

Carrasco Flores D, Hotter V, Vuong T, Hou Y, Bando Y, Scherlach K, Burgunter-Delamare B, Hermenau R, Komor AJ, Aiyar P, Rose M, Sasso S, Arndt H-D, Hertweck C, Mittag M (2024) A mutualistic bacterium rescues a green Alga from an antagonist. Proc Natl Acad Sci 121(15):e2401632121. https://doi.org/10.1073/pnas.2401632121

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cheong YJ, Trefely S (2025) Divergent roles for propionate and butyrate in colorectal cancer epigenetics. Nat Metabolism. https://doi.org/10.1038/s42255-024-01186-6

Article  Google Scholar 

Coale TH, Loconte V, Turk-Kubo KA, Vanslembrouck B, Mak WKE, Cheung S, Ekman A, Chen J-H, Hagino K, Takano Y, Nishimura T, Adachi M, Le Gros M, Larabell C, Zehr JP (2024) Nitrogen-fixing organelle in a marine Alga. Science 384:217–222. https://doi.org/10.1126/science.adk1075

Article  PubMed  CAS  Google Scholar 

Dao G-H, Wu G-X, Wang X-X, Zhang T-Y, Zhan X-M, Hu H-Y (2018) Enhanced microalgae growth through stimulated secretion of Indole acetic acid by symbiotic bacteria. Algal Res 33:345–351. https://doi.org/10.1016/j.algal.2018.06.006

Article  Google Scholar 

Demmig-Adams B, Polutchko SK, Adams WW (2022) Structure-Function-Environment relationship of the isomers Zeaxanthin and lutein. Photochem 2:308–325. https://doi.org/10.3390/photochem2020022

Article  CAS  Google Scholar 

Eh T-J, Jiang Y, Jiang M, Li J, Lei P, Ji X, Kim H-I, Zhao X, Meng F (2024) The role of Trehalose metabolism in plant stress tolerance. J Adv Res. https://doi.org/10.1016/j.jare.2024.12.025

Article  PubMed  Google Scholar 

Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360. https://doi.org/10.1126/science.1095964

Article  PubMed  CAS  Google Scholar 

Figueroa CM, Lunn JE (2016) A Tale of two sugars: Trehalose 6-Phosphate and sucrose. Plant Physiol 172(1):7–27. https://doi.org/10.1104/pp.16.00417

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fu Y, Wang Y, Yi L, Liu J, Yang S, Liu B, Chen F, Sun H (2023) Lutein production from microalgae: A review. Bioresour Technol 376:128875. https://doi.org/10.1016/j.biortech.2023.128875

Article  PubMed  CAS  Google Scholar 

Gonzalez LE, Bashan Y (2000) Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 66(4):1527–1531. https://doi.org/10.1128/aem.66.4.1527-1531.2000

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guo L, Xi B, Lu L (2024) Strategies to enhance production of metabolites in microbial co-culture systems. Bioresour Technol 406:131049. https://doi.org/10.1016/j.biortech.2024.131049

Article  PubMed  CAS  Google Scholar 

Heo J, Kim S, Cho D-H, Song GC, Kim H-S, Ryu C-M (2019) Genome-wide exploration of Escherichia coli genes to promote Chlorella vulgaris growth. Algal Res 38:101390. https://doi.org/10.1016/j.algal.2018.101390

Article  Google Scholar 

Jahns P, Latowski D, Strzalka K (2009) Mechanism and regulation of the Violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim Et Biophys Acta (BBA) - Bioenergetics 1787(1):3–14. https://doi.org/10.1016/j.bbabio.2008.09.013

Article  CAS  Google Scholar 

Johra FT, Bepari AK, Bristy AT, Reza HM (2020) A mechanistic review of β-Carotene, Lutein, and Zeaxanthin in eye health and disease. Antioxid (Basel) 9(11). https://doi.org/10.3390/antiox9111046

Ju M, Zhang J, Mai T, Li L, Gu T, Liu Y, Gao M (2023) Co-culture of Rhodotorula mucilaginosa and Monascus purpureus increased the yield of carotenoids and Monascus pigments. Food Sci Technol 183:114949. https://doi.org/10.1016/j.lwt.2023.114949

Article  CAS  Google Scholar 

Kareya MS, Mariam I, Rajacharya GH, Nesamma AA, Jutur PP (2022) Valorization of carbon dioxide (CO2) to enhance production of biomass, biofuels, and biorenewables (B3) in Chlorella saccharophila UTEX247: a circular bioeconomy perspective. Biofuels Bioprod Biorefin 16(3):682–697. https://doi.org/10.1002/bbb.2295

Article  CAS  Google Scholar 

Kasana RC, Pandey CB (2018) Exiguobacterium: an overview of a versatile genus with potential in industry and agriculture. Crit Rev Biotechnol 38:141–156. https://doi.org/10.1080/07388551.2017.1312273

Article  PubMed  CAS  Google Scholar 

Le Chevanton M, Garnier M, Bougaran G, Schreiber N, Lukomska E, Bérard JB, Fouilland E, Bernard O, Cadoret JP (2013) Screening and selection of growth-promoting bacteria for Dunaliella cultures. Algal Res 2:212–222. https://doi.org/10.1016/j.algal.2013.05.003

Article  Google Scholar 

Lee C, Jeon MS, Kim JY, Lee SH, Kim DG, Roh SW, Choi Y-E (2019) Effects of an auxin-producing symbiotic bacterium on cell growth of the microalga Haematococcus pluvialis: elevation of cell density and prolongation of exponential stage. Algal Res 41:101547. https://doi.org/10.1016/j.algal.2019.101547

Article  Google Scholar 

Lee J, Jeong B, Bae Ha R, Jang Ho A, Kim Jiyeun K (2023) Trehalose biosynthesis gene OtsA protects against stress in the initial infection stage of Burkholderia-Bean bug symbiosis. Microbiol Spectr 11(2):e03510–e03522. https://doi.org/10.1128/spectrum.03510-22

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li T, Xu L, Li W, Wang C, Gin KY-H, Chai X, Wu B (2024) Dissolved organic carbon Spurs bacterial-algal competition and phosphorus-paucity adaptation: boosting Microcystis’ phosphorus uptake capacity. Water Res 255:121465. https://doi.org/10.1016/j.watres.2024.121465

Article  PubMed  CAS  Google Scholar 

Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79:544–567. https://doi.org/10.1111/tpj.12509

Article  PubMed  CAS  Google Scholar 

Makaranga A, Jutur PP (2023) Dynamic metabolomic crosstalk between Chlorella saccharophila and its new symbiotic bacteria enhances lutein production in microalga without compromising its biomass. Enzyme Microb Technol 170:110291. https://doi.org/10.1016/j.enzmictec.2023.110291

Article  PubMed  CAS  Google Scholar 

Marfetán JA, Gallo AL, Farias ME, Vélez ML, Pescuma M, Ordoñez OF (2023) Exiguobacterium Sp. as a bioinoculant for plant-growth promotion and selenium biofortification strategies in horticultural plants. World J Microbiol Biotechnol 39(5):134. https://doi.org/10.1007/s11274-023-03571-x

Article  PubMed  CAS  Google Scholar 

Mayack C, Carmichael K, Phalen N, Khan Z, Hirche F, Stangl GI, White HK (2020) Gas chromatography – Mass spectrometry as a preferred method for quantification of insect hemolymph sugars. J Insect Physiol 127:104115. https://doi.org/10.1016/j.jinsphys.2020.104115

Article  PubMed  CAS  Google Scholar 

Na Q, Wang Y, Zhang M, Zhu C, Cao H, Liu S, Meng L (2025) SlLCYB2 affects the accumulation of carotenoids in tomato fruits. Food Bioscience 63:105782. https://doi.org/10.1016/j.fbio.2024.105782

Comments (0)

No login
gif