Mueller, K., Ash, C., Pennisi, E., and Smith, O., The gut microbiota: introduction, Science, 2012, vol. 336, no. 6086, p. 1245. https://doi.org/10.1126/science.336.6086.1245
Article CAS PubMed Google Scholar
Kohl, K.D. and Carey, H.V., A place for host–microbe symbiosis in the comparative physiologist’s toolbox, J. Exp. Biol., 2016, vol. 219, no. 22, pp. 3496—3504. https://doi.org/10.1242/jeb.136325
McDiarmid, R.W. and Altig, R., Tadpoles: The Biology of Anuran Larvae, Chicago, IL: University of Chicago Press, 2000.
Jiménez, R.R. and Sommer, S., The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation, Biodiversity Conserv., 2017, vol. 26, no. 4, pp. 763—786. https://doi.org/10.1007/s10531-016-1272-x
Reid, H.I., Treasurer, J.W., Adam, B., and Birkbeck, T.H., Analysis of bacterial populations in the gut of developing cod larvae and identification of Vibrio logei, Vibrio anguillarum and Vibrio splendidus as pathogens of cod larvae, Aquaculture, 2009, vol. 288, no. 1, pp. 36—43. https://doi.org/10.1016/j.aquaculture.2008.11.022
Ingerslev, H.C., Strube, M.L., Jørgensen, L.G., et al., Diet type dictates the gut microbiota and the immune response against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss), Fish Shellfish Immunol., 2014, vol. 40, no. 2, pp. 624—633. https://doi.org/10.1016/j.fsi.2014.08.021
Article CAS PubMed Google Scholar
Li, J., Ni, J., Li, J., et al., Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits, J. Appl. Microbiol., 2014, vol. 117, no. 6, pp. 1750—1760. https://doi.org/10.1111/jam.12663
Article CAS PubMed Google Scholar
Sullam, K.E., Rubin, B.E.R., Dalton, C.M., et al., Divergence across diet, time and populations rules out parallel evolution in the gut microbiomes of Trinidadian guppies, ISME J., 2015, vol. 9, no. 7, pp. 1508—1522. https://doi.org/10.1038/ismej.2014.231
Article PubMed PubMed Central Google Scholar
Fei, L., Ye, C., and Jiang, J., Colored Atlas of Chinese Amphibians and Their Distributions, Chengdu: Sichuan Publishing House of Science and Technology, 2012.
Liu, J.X., Ontogenesis and primary ecological study of Oreolalax rhodostigmatus, Bull. Biol., 2010, vol. 45, no. 1, pp. 50—52.
Zhao, Y., Chen, J., Wang, Z., et al., The complete mitochondrial genome of the vulnerable megophryid frog Oreolalax rhodostigmatus (Anura, Megophryidae), Conserv. Genet. Resour., 2018, vol. 10, no. 4, pp. 617—620. https://doi.org/10.1007/s12686-017-0878-y
Zhou, S., Rajput, A.P., Mao, T., et al., Adapting to novel environments together: evolutionary and ecological correlates of the bacterial microbiome of the world’s largest cavefish diversification (Cyprinidae, Sinocyclocheilus), Front. Microbiol., 2022, vol. 13. https://doi.org/10.3389/fmicb.2022.823254
Chen, S., Zhou, Y., Chen, Y., and Gu, J., fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics, 2018, vol. 34, no. 17, pp. i884—i890. https://doi.org/10.1093/bioinformatics/bty560
Article CAS PubMed PubMed Central Google Scholar
Li, D., Liu, C.M., Luo, R., et al., MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph, Bioinformatics, 2015, vol. 31, no. 10, pp. 1674—1676. https://doi.org/10.1093/bioinformatics/btv033
Article CAS PubMed Google Scholar
Zhu, W., Lomsadze, A., and Borodovsky, M., Ab initio gene identification in metagenomic sequences, Nucleic Acids Res., 2010, vol. 38, no. 12, p. e132. https://doi.org/10.1093/nar/gkq275
Article CAS PubMed PubMed Central Google Scholar
Fu, L., Niu, B., Zhu, Z., et al., CD-HIT: accelerated for clustering the next-generation sequencing data, Bioinformatics, 2012, vol. 28, no. 23, pp. 3150—3152. https://doi.org/10.1093/bioinformatics/bts565
Article CAS PubMed PubMed Central Google Scholar
Langmead, B. and Salzberg, S.L., Fast gapped-read alignment with Bowtie 2, Nat. Methods, 2012, vol. 9, no. 4, pp. 357—359. https://doi.org/10.1038/nmeth.1923
Article CAS PubMed PubMed Central Google Scholar
Hong, C., Manimaran, S., Shen, Y., et al., PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples, Microbiome, 2014, vol. 2. https://doi.org/10.1186/2049-2618-2-33
Qin, J., Li, Y., Cai, Z., et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature, 2012, vol. 490, no. 7418, pp. 55—60. https://doi.org/10.1038/nature11450
Article CAS PubMed Google Scholar
Menzel, P., Ng, K.L., and Krogh, A., Fast and sensitive taxonomic classification for metagenomics with Kaiju, Nat. Commun., 2016, vol. 7, no. 1, p. 1. https://doi.org/10.1038/ncomms11257
Buchfink, B., Xie, C., and Huson, D., Fast and sensitive protein alignment using DIAMOND, Nat. Methods, 2015, vol. 12, no. 1, pp. 59—60. https://doi.org/10.1038/nmeth.3176
Article CAS PubMed Google Scholar
Krzywinski, M., Schein, J., Birol, I., et al., Circos: an information aesthetic for comparative genomics, Genome Res., 2009, vol. 19, no. 9, pp. 1639—1645. https://doi.org/10.1101/gr.092759.109
Article CAS PubMed PubMed Central Google Scholar
Stevens, M. and Wagner, H., Vegan: community ecology package: R package version 1.17-4, 2010.
Wickham, H., ggplot2, WIREs Comput. Stat., 2011, vol. 3, no. 2, pp. 180—185. https://doi.org/10.1002/wics.147
Han, H., Wei, W., Hu, Y., et al., Diet evolution and habitat contraction of giant pandas via stable isotope analysis, Curr. Biol., 2019, vol. 29, no. 4, pp. 664—669. https://doi.org/10.1016/j.cub.2018.12.051
Article CAS PubMed Google Scholar
Hughes, R.L., Marco, M.L., Hughes, J.P., et al., The role of the gut microbiome in predicting response to diet and the development of precision nutrition models: I. Overview of current methods, Adv. Nutr. (Bethesda, Md), 2019, vol. 10, no. 6, pp. 953—978. https://doi.org/10.1093/advances/nmz022
Grier, A., Qiu, X., Bandyopadhyay, S., et al., Impact of prematurity and nutrition on the developing gut microbiome and preterm infant growth, Microbiome, 2017, vol. 5, no. 1, p. 158. https://doi.org/10.1186/s40168-017-0377-0
Article PubMed PubMed Central Google Scholar
Vences, M., Lyra, M.L., Kueneman, J.G., et al., Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas, Sci. Nat., 2016, vol. 103, no. 3, p. 25. https://doi.org/10.1007/s00114-016-1348-1
Kohl, K.D., Cary, T.L., Karasov, W.H., and Dearing, M.D., Restructuring of the amphibian gut microbiota through metamorphosis, Environ. Microbiol. Rep., 2013, vol. 5, no. 6, pp. 899—903. https://doi.org/10.1111/1758-2229.12092
Ramakrishna, B.S., Role of the gut microbiota in human nutrition and metabolism, J. Gastroenterol. Hepatol., 2013, vol. 28, suppl. 4, pp. 9—17. https://doi.org/10.1111/jgh.12294
Article CAS PubMed Google Scholar
Zhang, M., Chen, H., Liu, L., et al., The changes in the frog gut microbiome and its putative oxygen-related phenotypes accompanying the development of gastrointestinal complexity and dietary shift, Front. Microbiol., 2020, vol. 11. https://doi.org/10.3389/fmicb.2020.00162
Neiße, N., Santon, M., Bitton, P.P., and Michiels, N.K., Small benthic fish strike at prey over distances that fall within theoretical predictions for active sensing using light, J. Fish Biol., 2020, vol. 97, no. 4, pp. 1201—1208. https://doi.org/10.1111/jfb.14502
Qing-Hong, D.U., Chen, K., Huang, Z., et al., Community characteristics of phytoplankton in Anhai Bay, J. Fish. Res., 2018, vol. 40, no. 1, p. 42.
Alberdi, A., Aizpurua, O., Bohmann, K., et al., Do vertebrate gut metagenomes confer rapid ecological adaptation?, Trends Ecol. Evol., 2016, vol. 31, no. 9, pp. 689—699. https://doi.org/10.1016/j.tree.2016.06.008
Nicholson, J.K., Holmes, E., Kinross, J., et al., Host—gut microbiota metabolic interactions, Science, 2012, vol. 336, no. 6086, pp. 1262—1267. https://doi.org/10.1126/science.1223813
Comments (0)