Jepsen, P.U., Cooke, D.G., Koch, M.: Terahertz spectroscopy and imaging – modern techniques and applications. Laser Photonics Rev. 5(1), 124–166 (2010). https://doi.org/10.1002/lpor.201000011
Article ADS MATH Google Scholar
Abbott, D., Zhang, X.-C.: Special issue on t-ray imaging, sensing, and retection. Proc. IEEE 95(8), 1509–1513 (2007). https://doi.org/10.1109/jproc.2007.900894
Strachan, C.J., Taday, P.F., Newnham, D.A., Gordon, K.C., Zeitler, J.A., Pepper, M., Rades, T.: Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity. J. Pharm. Sci. 94(4), 837–846 (2005). https://doi.org/10.1002/jps.20281
Nagatsuma, T., Ducournau, G., Renaud, C.C.: Advances in terahertz communications accelerated by photonics. Nat. Photonics 10(6), 371–379 (2016). https://doi.org/10.1038/nphoton.2016.65
Article ADS MATH Google Scholar
Laman, N., Sree Harsha, S., Grischkowsky, D., Melinger, J.S.: 7 ghz resolution waveguide thz spectroscopy of explosives related solids showing new features. Opt. Express 16(6), 4094–4105 (2008). https://doi.org/10.1364/oe.16.004094
Akyildiz, I.F., Jornet, J.M., Han, C.: Terahertz band: Next frontier for wireless communications. Physical Communication. 12, 16–32 (2014). https://doi.org/10.1016/j.phycom.2014.01.006
Yan, F., Yu, C., Park, H., Parrott, E.P.J., Pickwell-MacPherson, E.: Advances in polarizer technology for terahertz frequency applications. Journal of Infrared, Millimeter, and Terahertz Waves. 34(9), 489–499 (2013). https://doi.org/10.1007/s10762-013-0005-4
Hsieh, C.F., Lai, Y.C., Pan, R.P., Pan, C.L.: Polarizing terahertz waves with nematic liquid crystals. Opt. Lett. 33(11), 1174–1176 (2008). https://doi.org/10.1364/ol.33.001174
Article ADS MATH Google Scholar
Baudrier-Raybaut, M., Haidar, R., Kupecek, P., Lemasson, P., Rosencher, E.: Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature 432(7015), 374–376 (2004). https://doi.org/10.1038/nature03027
Yamada, I., Takano, K., Hangyo, M., Saito, M., Watanabe, W.: Terahertz wire-grid polarizers with micrometer-pitch al gratings. Opt. Lett. 34(3), 274–276 (2009). https://doi.org/10.1364/ol.34.000274
Ren, L., Pint, C.L., Booshehri, L.G., Rice, W.D., Wang, X., Hilton, D.J., Takeya, K., Kawayama, I., Tonouchi, M., Hauge, R.H., Kono, J.: Carbon nanotube terahertz polarizer. Nano Lett. 9(7), 2610–2613 (2009). https://doi.org/10.1021/nl900815s
Wojdyla, A., Gallot, G.: Brewster’s angle silicon wafer terahertz linear polarizer. Opt. Express 19(15), 14099–14107 (2011). https://doi.org/10.1364/OE.19.014099
Lu, D., Liu, J.: Broadband single-polarization single-mode operation in photonic crystal fibers with hexagonally latticed circular airholes. J. Lightwave Technol. 34(10), 2452–2458 (2016). https://doi.org/10.1109/jlt.2016.2532905
Article ADS MATH Google Scholar
Hou, Y., Wang, G.-Z.: Broadband tunable single-mode single-polarization fiber. Opt. Commun. 351, 91–95 (2015). https://doi.org/10.1016/j.optcom.2015.04.052
Article ADS MATH Google Scholar
Hassani, A., Dupuis, A., Skorobogatiy, M.: Low loss porous terahertz fibers containing multiple subwavelength holes. Appl. Phys. Lett. 92, 7 (2008). https://doi.org/10.1063/1.2840164
Vincetti, L.: Hollow core photonic band gap fiber for thz applications. Microw. Opt. Technol. Lett. 51(7), 1711–1714 (2009). https://doi.org/10.1002/mop.24407
Mollah, M.A., Rana, S., Subbaraman, H.: Polarization filter realization using low-loss hollow-core anti-resonant fiber in thz regime. Results. Physics. (2020). https://doi.org/10.1016/j.rinp.2020.103092
Xue, L., Sheng, X., Jia, H., Lou, S.: Single-polarization low loss terahertz hollow-core anti-resonant fiber with high polarization loss ratio. Optics Communications. 537 (2023) https://doi.org/10.1016/j.optcom.2023.129460
Zhou, S.F., Chan, H.P., Reekie, L., Chow, Y.T., Chung, P.S., Luk, K.M.: Polymer fiber polarizer for terahertz applications. IEEE Photonics Technol. Lett. 24(17), 1490–1492 (2012). https://doi.org/10.1109/lpt.2012.2206021
Chen, H., Wang, H., Hou, H., Chen, D.: A terahertz single-polarization single-mode photonic crystal fiber with a rectangular array of micro-holes in the core region. Opt. Commun. 285(18), 3726–3729 (2012). https://doi.org/10.1016/j.optcom.2012.04.047
Article ADS MATH Google Scholar
Geng, P., Zhang, W., Zhang, H., Zhang, S., Ruan, J., Wei, S., Xue, X.: Design of broadband single-polarization single-mode photonic crystal fiber based on index-matching coupling. IEEE Photonics Technol. Lett. 24(6), 452–454 (2012). https://doi.org/10.1109/lpt.2011.2180710
Article ADS MATH Google Scholar
Yang, T., Ding, C., Ziolkowski, R.W., Guo, Y.J.: An epsilon-near-zero (enz) based, ultra-wide bandwidth terahertz single-polarization single-mode photonic crystal fiber. J. Lightwave Technol. 39(1), 223–232 (2021). https://doi.org/10.1109/jlt.2020.3022719
Yang, T., Ding, C., Ziolkowski, R.W., Guo, Y.J.: A terahertz (thz) single-polarization-single-mode (spsm) photonic crystal fiber (pcf). Materials (Basel). 12, 15 (2019). https://doi.org/10.3390/ma12152442
Luo, H.-Y., Zhu, Y.-F., Ke, Q., Luo, X.-F., Rao, C., Wang, H., Ye, Z., Ji, D.-D., Xu, Y.-H.: A low-loss polarization-maintaining terahertz fiber. Photon. Nanostruct. Fund. Appl. (2023). https://doi.org/10.1016/j.photonics.2023.101152
Jiang, X., Yang, H., Luo, W., Liu, H., Chen, D., Liu, X.: Twin-tube terahertz fiber for a polarization filter. Opt. Express 30(18), 31806–31815 (2022). https://doi.org/10.1364/OE.467712
Article ADS MATH Google Scholar
Mohammad-Zamani, M.J., Rouzbahani, M.: Highly efficient hybrid-structured photonic crystal fiber with ultra-low loss and near-zero flat dispersion for terahertz waveguiding. Opt. Quant. Electr. 56, 8 (2024). https://doi.org/10.1007/s11082-024-07258-x
Jaluria, Y., Manufacture of optical fibers: Drawing and coating processes, Advanced materials processing and manufacturing 2018, pp. 239–286.
Cruz, A.L.S., Cordeiro, C.M.B., Franco, M.A.R.: 3d printed hollow-core terahertz fibers. Fibers. 6, 3 (2018). https://doi.org/10.3390/fib6030043
Yu, B., Zhuang, S.-L., Wang, Z.-X., Wang, M.-S., Guo, L.-J., Li, X.-Y., Guo, W.-R., Su, W.-M., Gong, C., Liu, W.-W.: Nano-printing technology based double-spiral terahertz tunable metasurface. Act. Phys. Sin. 71, 11 (2022). https://doi.org/10.7498/aps.71.20212408
Hui, Z.-Q., Gao, L.-M., Liu, R.-H., Han, D.-D., Wang, W.: Dual-core negative curvature fiber-based terahertz polarization beam splitter with ultra-low loss and wide bandwidth. Act. Phys. Sin. 71, 4 (2022). https://doi.org/10.7498/aps.71.20211650
Comments (0)