Short-term effectiveness and safety of photobiomodulation on low-to-moderate myopia

Cooper CE, Springett R (1997) Measurement of cytochrome oxidase and mitochondrial energetics by near–infrared spectroscopy. Phil Trans R Soc Lond B 352:669–676

Article  CAS  Google Scholar 

Ball KA, Castello PR, Poyton RO (2011) Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. J Photochem Photobiol, B 102:182–191

Article  CAS  PubMed  Google Scholar 

Mason MG, Nicholls P, Cooper CE (2014) Re-evaluation of the near infrared spectra of mitochondrial cytochrome c oxidase: Implications for noninvasive in vivo monitoring of tissues. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1837:1882–1891

Article  CAS  PubMed  Google Scholar 

Ayuk SM, Houreld NN, Abrahamse H (2018) Effect of 660 nm visible red light on cell proliferation and viability in diabetic models in vitro under stressed conditions. Lasers Med Sci 33:1085–1093

Article  CAS  PubMed  Google Scholar 

Assis L, Moretti AIS, Abrahão TB et al (2012) Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg Med 44:726–735

Article  PubMed  PubMed Central  Google Scholar 

Cui Y, Xu N, Xu W, Xu G (2017) Mesenchymal stem cells attenuate hydrogen peroxide-induced oxidative stress and enhance neuroprotective effects in retinal ganglion cells. In Vitro Cell Dev Biol Animal 53(4):328–335

Article  CAS  Google Scholar 

Plass CA, Loew HG, Podesser BK, Prusa AM (2012) Light-induced vasodilation of coronary arteries and its possible clinical implication. Ann Thorac Surg 93:1181–1186

Article  PubMed  Google Scholar 

Taradaj J, Shay B, Dymarek R et al (2018) Effect of laser therapy on expression of angio-and fibrogenic factors, and cytokine concentrations during the healing process of human pressure ulcers. Int J Med Sci 15:1105–1112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beirne K, Freeman TJ, Rozanowska M, Votruba M (2021) Red Light Irradiation In Vivo Upregulates DJ-1 in the Retinal Ganglion Cell Layer and Protects against Axotomy-Related Dendritic Pruning. Int J Mol Sci 22:8380

Article  CAS  PubMed  PubMed Central  Google Scholar 

Markowitz SN, Devenyi RG, Munk MR et al (2020) A double-masked, randomized, sham-controlled, single-center study with photobiomodulation for the treatment of dry age-related macular degeneration. Retina [Internet] 40(8):1471–1482

Article  CAS  PubMed  Google Scholar 

Ivandic BT, Ivandic T (2008) Low-level laser therapy improves vision in patients with age-related macular degeneration. Photomed Laser Surg 26:241–245

Article  PubMed  Google Scholar 

Merry GF, Munk MR, Dotson RS, Walker MG, Devenyi RG (2017) Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration. Acta Ophthalmol 95:e270–e277

Article  PubMed  Google Scholar 

Shen W, Teo KYC, Wood JPM et al (2020) Preclinical and clinical studies of photobiomodulation therapy for macular oedema. Diabetologia 63:1900–1915

Article  CAS  PubMed  Google Scholar 

Tang J, Herda AA, Kern TS (2014) Photobiomodulation in the treatment of patients with non-center-involving diabetic macular oedema. Br J Ophthalmol 98:1013–1015

Article  PubMed  Google Scholar 

Ivandic BT, Ivandic T (2014) Low-level laser therapy improves vision in a Patient with Retinitis Pigmentosa. Photomed Laser Surg 32:181–184

Article  PubMed  Google Scholar 

Ivandic BT, Ivandic T (2012) Low-level laser therapy improves visual acuity in adolescent and adult patients with amblyopia. Photomed Laser Surg 30:167–171

Article  PubMed  Google Scholar 

Xiong F, Mao T, Liao H et al (2021) Orthokeratology and low-intensity laser therapy for slowing the progression of myopia in children. Biomed Res Int 2021:8915867

Article  PubMed  PubMed Central  Google Scholar 

Wong CW, Phua V, Lee SY et al (2017) Is choroidal or scleral thickness related to myopic macular degeneration. Invest Ophthalmol Vis Sci 58(2):907–913

Article  PubMed  Google Scholar 

Wu H, Chen W, Zhao F et al (2018) Scleral hypoxia is a target for myopia control. Proc Natl Acad Sci U S A 115:E7091–E7100

Article  CAS  PubMed  PubMed Central  Google Scholar 

World Medical Association (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191–2194

Article  Google Scholar 

Ye L, Shi Y, Yin Y et al (2020) Effects of atropine treatment on choroidal thickness in myopic children. Invest Ophthalmol Vis Sci 61:15

PubMed  PubMed Central  Google Scholar 

Wu H, Chen W, Zhao F et al (2018) Scleral hypoxia is a target for myopia control. Proc Natl Acad Sci USA 115(30):E7091–E7100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao F, Zhang D, Zhou Q et al (2020) Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis. EBioMedicine 57:102878

Article  PubMed  PubMed Central  Google Scholar 

Lin H-J, Wei C-C, Chang C-Y et al (2016) Role of chronic inflammation in myopia progression: clinical evidence and experimental validation. EBioMedicine 10:269–281

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sommer AP (2019) Revisiting the photon/cell interaction mechanism in low-level light therapy. Photobiomodulation, Photomed, Laser Surg 37:336–341

Article  CAS  Google Scholar 

Hoh Kam J, Lenassi E, Jeffery G (2010) Viewing ageing eyes: diverse sites of amyloid Beta accumulation in the ageing mouse retina and the up-regulation of macrophages. PLoS ONE 5:e13127

Article  PubMed  PubMed Central  Google Scholar 

Chang DB, Luttrull JK (2020) Comparison of subthreshold 577 and 810 nm micropulse laser effects on heat-shock protein activation kinetics: implications for treatment efficacy and safety. Transl Vis Sci Technol 9:23

Article  PubMed  PubMed Central  Google Scholar 

Boltz A, Schmidl D, Werkmeister RM et al (2013) Regulation of optic nerve head blood flow during combined changes in intraocular pressure and arterial blood pressure. J Cereb Blood Flow Metab 33:1850–1856

Article  PubMed  PubMed Central  Google Scholar 

Riva CE, Titze P, Hero M, Petrig BL (1997) Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci 38:1752–1760

CAS  PubMed  Google Scholar 

Bogner B, Tockner B, Runge C et al (2011) The effect of vasopressin on choroidal blood flow, intraocular pressure, and orbital venous pressure in rabbits. Invest Ophthalmol Vis Sci 52:7134–7140

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang W, Jiang Y, Zhu Z, Zhang S et al (2023) Axial shortening in myopic children after repeated low-level red-light therapy: post hoc analysis of a randomized trial. Ophthalmol Ther 12(2):1223–1237

Article  PubMed  PubMed Central  Google Scholar 

Wang W, Jiang Y, Zhu Z et al (2023) Clinically significant axial shortening in myopic children after repeated low-level red light therapy: a retrospective multicenter analysis. Ophthalmol Ther. 12(2):999–1011

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif