Hany M, Rehman B, Rizvi A, Chapman J (2024) Schizophrenia. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). PMID: 30969686
Xu Q, Cai M, Ji Y, Ma J, Liu J, Zhao Q et al (2023) Identifying the mediating role of socioeconomic status on the relationship between schizophrenia and major depressive disorder: a mendelian randomisation analysis. Schizophrenia (Heidelb) 9(1):53. https://doi.org/10.1038/s41537-023-00389-2
Ferrara M, Curtarello EMA, Gentili E, Domenicano I, Vecchioni L, Zese R et al (2024) Sex differences in schizophrenia-spectrum diagnoses: results from a 30-year health record registry. Archives Womens Mental Health 27(1):11–20. https://doi.org/10.1007/s00737-023-01371-8
Sher L, Kahn RS (2019) Suicide in Schizophrenia: an Educational Overview. Medicina 55(7):361. https://doi.org/10.3390/medicina55070361
Article PubMed PubMed Central Google Scholar
Li R, Ma X, Wang G, Yang J, Wang C (2016) Why sex differences in schizophrenia? J Translational Neurosci (Beijing) 1:37–42. PMID: 29152382
Li X, Zhou W, Yi Z (2022) A glimpse of gender differences in schizophrenia. Gen Psychiatry 35(4):e100823. https://doi.org/10.1136/gpsych-2022-100823
Ochoa S, Usall J, Cobo J, Labad X, Kulkarni J (2012) Gender differences in Schizophrenia and First-Episode psychosis: a Comprehensive Literature Review. Schizophrenia Res Treat 2012:1–9. https://doi.org/10.1155/2012/916198
Krieger N (2003) Genders, sexes, and health: what are the connections—and why does it matter? Int J Epidemiol 32(4):652–657. https://doi.org/10.1093/ije/dyg156
Getachew B, Tizabi Y (2021) Vitamin D and COVID-19: role of ACE2, age, gender, and ethnicity. J Med Virol 93(9):5285–5294. https://doi.org/10.1002/jmv.27075
Article CAS PubMed PubMed Central Google Scholar
National Academies of Sciences, Engineering, and Medicine (2022) Measuring sex, gender identity, and sexual orientation. Natl Academies Press. https://doi.org/10.17226/26424
Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A et al (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci 94(2):587–592. https://doi.org/10.1073/pnas.94.2.587
Article CAS PubMed PubMed Central Google Scholar
Baier CJ, Pallarés ME, Adrover E, Monteleone MC, Brocco MA, Barrantes FJ, Antonelli MC (2015) Prenatal restraint stress decreases the expression of alpha-7 nicotinic receptor in the brain of adult rat offspring. Stress 18(4):435–445. https://doi.org/10.3109/10253890.2015.1022148
Article CAS PubMed Google Scholar
Duncan L, Deisseroth K (2024) Are novel treatments for brain disorders hiding in plain sight? Neuropsychopharmacology 49(1):276–281. https://doi.org/10.1038/s41386-023-01636-x
Article CAS PubMed Google Scholar
Helaly AMN, Ghorab DSED (2023) Schizophrenia as metabolic disease. What are the causes? Metab Brain Dis 38(3):795–804. https://doi.org/10.1007/s11011-022-01147-6
Article PubMed PubMed Central Google Scholar
Deutsch SI, Long K, Rosse RB, Bellack AS, Tizabi Y, Weizman R, Eller J, Mastropaolo J (2006) Animal models of psychosis. In: Flint J (ed) Transgenic and knockout models of Neuropsychiatric disorders. Fisch GS. Humana, Totown, NJ), pp 193–220
Coyle JT (2024) Passing the torch: the ascendance of the glutamatergic synapse in the pathophysiology of schizophrenia. Biochem Pharmacol 228:116376. https://doi.org/10.1016/j.bcp.2024.116376
Article CAS PubMed Google Scholar
Peng A, Chai J, Wu H, Bai B, Yang H, He W, Zhao Y (2024) New therapeutic targets and drugs for Schizophrenia Beyond dopamine D2 receptor antagonists. Neuropsychiatr Dis Treat 20:607–620. https://doi.org/10.2147/NDT.S455279
Article PubMed PubMed Central Google Scholar
Meltzer HY (1991) The mechanism of action of novel antipsychotic drugs. Schizophr Bull 17(2):263–287. https://doi.org/10.1093/schbul/17.2.263
Article CAS PubMed Google Scholar
Tizabi Y (2007) Nicotine and nicotinic system in hypoglutamatergic models of schizophrenia. Neurotox Res 12(4):233–246. https://doi.org/10.1007/BF03033907
Article CAS PubMed Google Scholar
Tizabi Y, Mastropaolo J, Park CH et al (1998) Both nicotine and mecamylamine block dizocilpine-induced explosive jumping behavior in mice: psychiatric implications. Psychopharmacology 140(2):202–205. https://doi.org/10.1007/s002130050758
Article CAS PubMed Google Scholar
Tizabi Y, Copeland RL Jr., Brus R, Kostrzewa RM (1999) Nicotine blocks quinpirole-induced behavior in rats: psychiatric implications. Psychopharmacology 145(4):433–441. https://doi.org/10.1007/s002130051078
Article CAS PubMed Google Scholar
Hu W, MacDonald ML, Elswick DE, Sweet RA (2015) The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci 1338(1):38–57. https://doi.org/10.1111/nyas.12547
Article CAS PubMed Google Scholar
Direktor M, Gass P, Inta D (2024) Understanding the therapeutic action of antipsychotics: from molecular to cellular targets with focus on the islands of Calleja. Int J Neuropsychopharmacol 27(4). https://doi.org/10.1093/ijnp/pyae018
Sotoyama H, Namba H, Tohmi M, Nawa H (2023) Schizophrenia Animal modeling with epidermal growth factor and its homologs: their connections to the inflammatory pathway and the dopamine system. Biomolecules 13(2):372. https://doi.org/10.3390/biom13020372
Article CAS PubMed PubMed Central Google Scholar
Afroz KF, Manchia M (2023) Gut microbiome and psychiatric disorders. BMC Psychiatry 23:488. https://doi.org/10.1186/s12888-023-05003-4
Article PubMed PubMed Central Google Scholar
Grau-Del Valle C, Fernández J, Solá E, Montoya-Castilla I, Morillas C, Bañuls C (2023) Association between gut microbiota and psychiatric disorders: a systematic review. Front Psychol 14:1215674. https://doi.org/10.3389/fpsyg.2023.1215674
Article PubMed PubMed Central Google Scholar
Hashimoto K (2023) Emerging role of the host microbiome in neuropsychiatric disorders: overview and future directions. Mol Psychiatry 28:3625–3637. https://doi.org/10.1038/s41380-023-02287-6
Article PubMed PubMed Central Google Scholar
Hassamal S (2023) Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories. Front Psychiatry 1114:1130989. https://doi.org/10.3389/fpsyt.2023
Ahmed GK, Ramadan HKA, Elbeh K, Nourelhoda AH (2024) Bridging the gap: associations between gut microbiota and psychiatric disorders. Middle East Curr Psychiatry 31:2. https://doi.org/10.1186/s43045-024-00395-9
Belujon P, Grace AA (2017) Dopamine System Dysregulation in Major Depressive disorders. Int J Neuropsychopharmacol 120(12):1036–1046. https://doi.org/10.1093/ijnp/pyx056
McCutcheon RA, Abi-Dargham A, Howes OD (2019) Schizophrenia, dopamine and the striatum: from Biology to symptoms. Trends Neurosci 2(3):205–220. https://doi.org/10.1016/j.tins.2018.12.004
Khoodoruth MAS, Estudillo-Guerra MA, Pacheco-Barrios K, Nyundo A, Chapa-Koloffon G, Ouanes S (2022) Glutamatergic system in Depression and its role in neuromodulatory techniques optimization. Front Psychiatry 13:886918. https://doi.org/10.3389/fpsyt.2022.886918
Mizuno Y, Ashok AH, Bhat BB, Jauhar S, Howes OD (2023) Dopamine in major depressive disorder: a systematic review and meta-analysis of in vivo imaging studies. J Psychopharmacol 37(11):1058–1069. https://doi.org/10.1177/02698811231200881
Article CAS PubMed PubMed Central Google Scholar
Gupta JK, Singh K, Bhatt A, Porwal P, Rani R, Dubey A, Jain D, Rai SN (2024) Recent advances in the synthesis of antidepressant derivatives: pharmacologic insights for mood disorders. Biotechnology 14(11):260. https://doi.org/10.1007/s13205-024-04104-5
Sun D, Xi K, Yang R, Chu J, Xu M, Zhang D, Cheng Y (2024) Gray matter volume differences based on sex in first-episode drug-naive patients with major depressive disorder and its molecular analysis. Neuroreport Epub Ahead Print.
Comments (0)